中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 10
Oct.  2025
Turn off MathJax
Article Contents

Regulatory role of macrophage glycolysis in metabolic dysfunction-associated fatty liver disease

DOI: 10.12449/JCH251025
Research funding:

National Natural Science Foundation of China (81970512)

More Information
  • Corresponding author: HOU Yixin, xuexin162@163.com (ORCID: 0000-0001-8233-7210); HAN Juqiang, hanjuqiang2014@126.com (ORCID: 0000-0003-2328-0300)
  • Received Date: 2025-03-13
  • Accepted Date: 2025-05-16
  • Published Date: 2025-10-25
  • Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common chronic liver disease in clinical practice, and macrophages are directly involved in the development, progression, and prognosis of MAFLD. Studies have confirmed that glucose metabolic reprogramming in macrophages directly affects immune function, which in turn affects the local inflammatory environment of liver and hepatocyte metabolism. This article reviews the changes in glucose metabolism of macrophages and the corresponding key molecules in the pathogenesis of MAFLD, in order to provide new targets and strategies for the prevention and treatment of MAFLD in the future.

     

  • loading
  • [1]
    WONG VW, EKSTEDT M, WONG GL, et al. Changing epidemiology, global trends and implications for outcomes of NAFLD[J]. J Hepatol, 2023, 79( 3): 842- 852. DOI: 10.1016/j.jhep.2023.04.036.
    [2]
    YUAN YF, CAO Q, JIANG YY. Association of dietary behavior with nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2023, 39( 2): 401- 407. DOI: 10.3969/j.issn.1001-5256.2023.02.024.

    袁乙富, 曹勤, 蒋元烨. 饮食行为与非酒精性脂肪性肝病的关系[J]. 临床肝胆病杂志, 2023, 39( 2): 401- 407. DOI: 10.3969/j.issn.1001-5256.2023.02.024.
    [3]
    ZHOU JH, ZHOU F, WANG WX, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology, 2020, 71( 5): 1851- 1864. DOI: 10.1002/hep.31150.
    [4]
    MAN S, DENG YH, MA Y, et al. Prevalence of liver steatosis and fibrosis in the general population and various high-risk populations: A nationwide study with 5.7 million adults in China[J]. Gastroenterology, 2023, 165( 4): 1025- 1040. DOI: 10.1053/j.gastro.2023.05.053.
    [5]
    RUPASINGHE K, HIND J, HEGARTY R. Updates in metabolic dysfunction-associated fatty liver disease(MAFLD) in children[J]. J Pediatr Gastroenterol Nutr, 2023, 77( 5): 583- 591. DOI: 10.1097/MPG.0-000000000003919.
    [6]
    LIU M, CHEN WJ, ZHOU ZZ, et al. Histopathological characteristics of the liver in children with non-alcoholic fatty liver disease[J]. J Clin Hepatol, 2023, 39( 5): 1144- 1149. DOI: 10.3969/j.issn.1001-5256.2023.05.021.

    刘敏, 陈卫坚, 周峥珍, 等. 非酒精性脂肪性肝病儿童肝组织病理特征分析[J]. 临床肝胆病杂志, 2023, 39( 5): 1144- 1149. DOI: 10.3969/j.issn.1001-5256.2023.05.021.
    [7]
    ZHONG HX, DONG JY, ZHU LY, et al. Non-alcoholic fatty liver disease: Pathogenesis and models[J]. Am J Transl Res, 2024, 16( 2): 387- 399. DOI: 10.62347/KMSA5983.
    [8]
    ZHAO SN, GUO Y, YIN XZ. Lipid peroxidation in ferroptosis and association with nonalcoholic fatty liver disease[J]. Front Biosci(Landmark Ed), 2023, 28( 12): 332. DOI: 10.31083/j.fbl2812332.
    [9]
    TIAN XB, WANG Y, LU Y, et al. Conditional depletion of macrophages ameliorates cholestatic liver injury and fibrosis via lncRNA-H19[J]. Cell Death Dis, 2021, 12( 7): 646. DOI: 10.1038/s41419-021-03931-1.
    [10]
    WEN YK, LAMBRECHT J, JU C, et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities[J]. Cell Mol Immunol, 2021, 18( 1): 45- 56. DOI: 10.1038/s41423-020-00558-8.
    [11]
    HAN JQ, ZHANG X, LAU JK, et al. Bone marrow-derived macrophage contributes to fibrosing steatohepatitis through activating hepatic stellate cells[J]. J Pathol, 2019, 248( 4): 488- 500. DOI: 10.1002/path.5275.
    [12]
    MAO TY, YANG R, LUO Y, et al. Crucial role of T cells in NAFLD-related disease: A review and prospect[J]. Front Endocrinol(Lausanne), 2022, 13: 1051076. DOI: 10.3389/fendo.2022.1051076.
    [13]
    PAN ZY, CHAN WK, ESLAM M. The role of B cells in metabolic(dysfunction)-associated fatty liver disease[J]. Hepatobiliary Surg Nutr, 2021, 10( 6): 875- 877. DOI: 10.21037/hbsn-21-404.
    [14]
    CHEN SW, GUO HT, XIE MJ, et al. Neutrophil: An emerging player in the occurrence and progression of metabolic associated fatty liver disease[J]. Int Immunopharmacol, 2021, 97: 107609. DOI: 10.1016/j.intimp.2021.107609.
    [15]
    XU M, XU H, LING YW, et al. Neutrophil extracellular traps-triggered hepatocellular senescence exacerbates lipotoxicity in non-alcoholic steatohepatitis[J]. J Adv Res, 2025. DOI: 10.1016/j.jare.2025.03.015.[ Epub ahead of print]
    [16]
    ZHANG KL, JAGANNATH C. Crosstalk between metabolism and epigenetics during macrophage polarization[J]. Epigenetics Chromatin, 2025, 18( 1): 16. DOI: 10.1186/s13072-025-00575-9.
    [17]
    KAZANKOV K, JØRGENSEN SMD, THOMSEN KL, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16( 3): 145- 159. DOI: 10.1038/s41575-018-0082-x.
    [18]
    ZHANG WH, LANG R. Macrophage metabolism in nonalcoholic fatty liver disease[J]. Front Immunol, 2023, 14: 1257596. DOI: 10.3389/fimmu.2023.1257596.
    [19]
    BARREBY E, CHEN P, AOUADI M. Macrophage functional diversity in NAFLD: More than inflammation[J]. Nat Rev Endocrinol, 2022, 18( 8): 461- 472. DOI: 10.1038/s41574-022-00675-6.
    [20]
    VONDERLIN J, CHAVAKIS T, SIEWEKE M, et al. The multifaceted roles of macrophages in NAFLD pathogenesis[J]. Cell Mol Gastroenterol Hepatol, 2023, 15( 6): 1311- 1324. DOI: 10.1016/j.jcmgh.2023.03.002.
    [21]
    LIU YC, ZOU XB, CHAI YF, et al. Macrophage polarization in inflammatory diseases[J]. Int J Biol Sci, 2014, 10( 5): 520- 529. DOI: 10.7150/ijbs.8879.
    [22]
    WAN JH, BENKDANE M, TEIXEIRA-CLERC F, et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: A protective mechanism against alcoholic and nonalcoholic fatty liver disease[J]. Hepatology, 2014, 59( 1): 130- 142. DOI: 10.1002/hep.26607.
    [23]
    PANT R, KABEER SW, SHARMA S, et al. Pharmacological inhibition of DNMT1 restores macrophage autophagy and M2 polarization in Western diet-induced nonalcoholic fatty liver disease[J]. J Biol Chem, 2023, 299( 6): 104779. DOI: 10.1016/j.jbc.2023.104779.
    [24]
    VIOLA A, MUNARI F, SÁNCHEZ-RODRÍGUEZ R, et al. The metabolic signature of macrophage responses[J]. Front Immunol, 2019, 10: 1462. DOI: 10.3389/fimmu.2019.01462.
    [25]
    ANAVI S, MADAR Z, TIROSH O. Non-alcoholic fatty liver disease, to struggle with the strangle: Oxygen availability in fatty livers[J]. Redox Biol, 2017, 13: 386- 392. DOI: 10.1016/j.redox.2017.06.008.
    [26]
    LIN XF, CUI XN, YANG J, et al. SGLT2 inhibitors ameliorate NAFLD in mice via downregulating PFKFB3, suppressing glycolysis and modulating macrophage polarization[J]. Acta Pharmacol Sin, 2024, 45( 12): 2579- 2597. DOI: 10.1038/s41401-024-01389-3.
    [27]
    LIN H, ZHU LX, BAKER SS, et al. Secreted phosphoglucose isomerase is a novel biomarker of nonalcoholic fatty liver in mice and humans[J]. Biochem Biophys Res Commun, 2020, 529( 4): 1101- 1105. DOI: 10.1016/j.bbrc.2020.06.126.
    [28]
    XU F, GUO MM, HUANG W, et al. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH[J]. Redox Biol, 2020, 36: 101634. DOI: 10.1016/j.redox.2020.101634.
    [29]
    YU Q, WANG YF, DONG L, et al. Regulations of glycolytic activities on macrophages functions in tumor and infectious inflammation[J]. Front Cell Infect Microbiol, 2020, 10: 287. DOI: 10.3389/fcimb.2020.00287.
    [30]
    WANG FL, ZHANG S, VUCKOVIC I, et al. Glycolytic stimulation is not a requirement for M2 macrophage differentiation[J]. Cell Metab, 2018, 28( 3): 463- 475. DOI: 10.1016/j.cmet.2018.08.012.
    [31]
    FREEMERMAN AJ, JOHNSON AR, SACKS GN, et al. Metabolic reprogramming of macrophages: Glucose transporter 1(GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype[J]. J Biol Chem, 2014, 289( 11): 7884- 7896. DOI: 10.1074/jbc.M113.522037.
    [32]
    PAVLOU S, WANG LX, XU HP, et al. Higher phagocytic activity of thioglycollate-elicited peritoneal macrophages is related to metabolic status of the cells[J]. J Inflamm(Lond), 2017, 14: 4. DOI: 10.1186/s12950-017-0151-x.
    [33]
    WCULEK SK, DUNPHY G, HERAS-MURILLO I, et al. Metabolism of tissue macrophages in homeostasis and pathology[J]. Cell Mol Immunol, 2022, 19( 3): 384- 408. DOI: 10.1038/s41423-021-00791-9.
    [34]
    KOO SJ, GARG NJ. Metabolic programming of macrophage functions and pathogens control[J]. Redox Biol, 2019, 24: 101198. DOI: 10.1016/j.redox.2019.101198.
    [35]
    LIU ZJ, LE YF, CHEN H, et al. Role of PKM2-mediated immunometabolic reprogramming on development of cytokine storm[J]. Front Immunol, 2021, 12: 748573. DOI: 10.3389/fimmu.2021.748573.
    [36]
    PALSSON-MCDERMOTT EM, CURTIS AM, GOEL G, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages[J]. Cell Metab, 2015, 21( 1): 65- 80. DOI: 10.1016/j.cmet.2014.12.005.
    [37]
    MEOLI L, GUPTA NK, SAEIDI N, et al. Nonalcoholic fatty liver disease and gastric bypass surgery regulate serum and hepatic levels of pyruvate kinase isoenzyme M2[J]. Am J Physiol Endocrinol Metab, 2018, 315( 4): E613- E621. DOI: 10.1152/ajpendo.00296.2017.
    [38]
    ZHAO P, HAN SN, ARUMUGAM S, et al. Digoxin improves steatohepatitis with differential involvement of liver cell subsets in mice through inhibition of PKM2 transactivation[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 317( 4): G387- G397. DOI: 10.1152/ajpgi.00054.2019.
    [39]
    ALQURAISHI M, PUCKETT DL, ALANI DS, et al. Pyruvate kinase M2: A simple molecule with complex functions[J]. Free Radic Biol Med, 2019, 143: 176- 192. DOI: 10.1016/j.freeradbiomed.2019.08.007.
    [40]
    WANG Q, BU QF, LIU M, et al. XBP1-mediated activation of the STING signalling pathway in macrophages contributes to liver fibrosis progression[J]. JHEP Rep, 2022, 4( 11): 100555. DOI: 10.1016/j.jhepr.2022.100555.
    [41]
    YUAN YD, JIANG SJ, ZHANG YL. Research progress in the treatment of metabolic related diseases with Wendan decoction and its modified formulas[J]. J Changchun Univ Chin Med, 2025, 41( 3): 328- 333. DOI: 10.13463/j.cnki.cczyy.2025.03.021.

    袁雅丹, 蒋淑君, 张彦亮. 温胆汤及其加减方治疗代谢相关性疾病的研究进展[J]. 长春中医药大学学报, 2025, 41( 3): 328- 333. DOI: 10.13463/j.cnki.cczyy.2025.03.021.
    [42]
    ZHOU L, ZHAO J, MA K, et al. Targeting immune cellular populations and transcription factors: unraveling the therapeutic potential of JQF for NAFLD[J]. Front Immunol, 2025, 15: 1445924. DOI: 10.3389/fimmu.2024.1445924.
    [43]
    NATI M, CHUNG KJ, CHAVAKIS T. The role of innate immune cells in nonalcoholic fatty liver disease[J]. J Innate Immun, 2022, 14( 1): 31- 41. DOI: 10.1159/000518407.
    [44]
    ZHOU JG, SUN L, LIU L, et al. Hepatic macrophage targeted siRNA lipid nanoparticles treat non-alcoholic steatohepatitis[J]. J Control Release, 2022, 343: 175- 186. DOI: 10.1016/j.jconrel.2022.01.038.
    [45]
    YANG W, YAN XX, CHEN R, et al. Smad4 deficiency in hepatocytes attenuates NAFLD progression via inhibition of lipogenesis and macrophage polarization[J]. Cell Death Dis, 2025, 16( 1): 58. DOI: 10.1038/s41419-025-07376-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (47) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return