| [1] |
DEVARBHAVI H, ASRANI SK, ARAB JP, et al. Global burden of liver disease: 2023 update[J]. J Hepatol, 2023, 79( 2): 516- 537. DOI: 10.1016/j.jhep.2023.03.017.
|
| [2] |
WANG JQ, LI LL, HU A, et al. Inhibition of ASGR1 decreases lipid levels by promoting cholesterol excretion[J]. Nature, 2022, 608( 7922): 413- 420. DOI: 10.1038/s41586-022-05006-3.
|
| [3] |
LIU W, CHAKRABORTY B, SAFI R, et al. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer[J]. Nat Commun, 2021, 12( 1): 5103. DOI: 10.1038/s41467-021-25354-4.
|
| [4] |
HASSEN C BEN, GOUPILLE C, VIGOR C, et al. Is cholesterol a risk factor for breast cancer incidence and outcome?[J]. J Steroid Biochem Mol Biol, 2023, 232: 106346. DOI: 10.1016/j.jsbmb.2023.106346.
|
| [5] |
LIANG ZC, ZHANG Z, TAN XN, et al. Lipids, cholesterols, statins and liver cancer: A Mendelian randomization study[J]. Front Oncol, 2023, 13: 1251873. DOI: 10.3389/fonc.2023.1251873.
|
| [6] |
YU JJ, DU YZ, SU J, et al. Preventive effect and mechanism of Citri Reticulatae Pericarpium on hypercholesterolemia rats[J]. Chin Tradit Pat Med, 2021, 43( 11): 2982- 2988. DOI: 10.3969/j.issn.1001-1528.2021.11.009.
俞静静, 杜宇忠, 苏洁, 等. 陈皮对高胆固醇血症大鼠的预防作用及其机制[J]. 中成药, 2021, 43( 11): 2982- 2988. DOI: 10.3969/j.issn.1001-1528.2021.11.009.
|
| [7] |
YANG F, KOU JJ, LIU ZZ, et al. MYC enhances cholesterol biosynthesis and supports cell proliferation through SQLE[J]. Front Cell Dev Biol, 2021, 9: 655889. DOI: 10.3389/fcell.2021.655889.
|
| [8] |
XU HJ, ZHOU S, TANG QL, et al. Cholesterol metabolism: New functions and therapeutic approaches in cancer[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874( 1): 188394. DOI: 10.1016/j.bbcan.2020.188394.
|
| [9] |
SAHA P, SHUMATE JL, CALDWELL JG, et al. Inter-domain dynamics drive cholesterol transport by NPC1 and NPC1L1 proteins[J]. eLife, 2020, 9: e57089. DOI: 10.7554/eLife.57089.
|
| [10] |
van de SLUIS B, WIJERS M, HERZ J. News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1[J]. Curr Opin Lipidol, 2017, 28( 3): 241- 247. DOI: 10.1097/MOL.0000000000000411.
|
| [11] |
BAZIOTI V, LA ROSE AM, MAASSEN S, et al. T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice[J]. Nat Commun, 2022, 13( 1): 3799. DOI: 10.1038/s41467-022-31135-4.
|
| [12] |
WANG PH, YUE ZZ, WEI XT, et al. Influence of extracts from Euphorbiae Semen before and after frosting on cholesterol efflux in Caco-2 cells through liver X receptor-adenosine triphosphate-binding cassette transporter A1 pathway[J]. Chin J Clin Pharmacol, 2023, 39( 2): 201- 205. DOI: 10.13699/j.cnki.1001-6821.2023.02.011.
王佩华, 岳珠珠, 魏晓彤, 等. 千金子制霜前后提取物通过肝X受体-腺苷三磷酸结合盒转运体A1信号通路对Caco-2细胞中胆固醇外流的影响[J]. 中国临床药理学杂志, 2023, 39( 2): 201- 205. DOI: 10.13699/j.cnki.1001-6821.2023.02.011.
|
| [13] |
YAN CS, ZHENG L, JIANG ST, et al. Exhaustion-associated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity[J]. Cancer Cell, 2023, 41( 7): 1276- 1293. DOI: 10.1016/j.ccell.2023.04.016.
|
| [14] |
CARDOSO D, PERUCHA E. Cholesterol metabolism: A new molecular switch to control inflammation[J]. Clin Sci(Lond), 2021, 135( 11): 1389- 1408. DOI: 10.1042/CS20201394.
|
| [15] |
LIM MYC, HO HK. Pharmacological modulation of cholesterol 7α-hydroxylase(CYP7A1) as a therapeutic strategy for hypercholesterolemia[J]. Biochem Pharmacol, 2024, 220: 115985. DOI: 10.1016/j.bcp.2023.115985.
|
| [16] |
TAN JME, COOK ECL, van den BERG M, et al. Differential use of E2 ubiquitin conjugating enzymes for regulated degradation of the rate-limiting enzymes HMGCR and SQLE in cholesterol biosynthesis[J]. Atherosclerosis, 2019, 281: 137- 142. DOI: 10.1016/j.atherosclerosis.2018.12.008.
|
| [17] |
FAULKNER R, JO Y. Synthesis, function, and regulation of sterol and nonsterol isoprenoids[J]. Front Mol Biosci, 2022, 9: 1006822. DOI: 10.3389/fmolb.2022.1006822.
|
| [18] |
FAULKNER RA, YANG YY, TSIEN J, et al. Direct binding to sterols accelerates endoplasmic reticulum-associated degradation of HMG CoA reductase[J]. Proc Natl Acad Sci U S A, 2024, 121( 7): e2318822121. DOI: 10.1073/pnas.2318822121.
|
| [19] |
JIANG LY, JIANG W, TIAN N, et al. Ring finger protein 145(RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase[J]. J Biol Chem, 2018, 293( 11): 4047- 4055. DOI: 10.1074/jbc.RA117.001260.
|
| [20] |
van den BOOMEN DJH, VOLKMAR N, LEHNER PJ. Ubiquitin-mediated regulation of sterol homeostasis[J]. Curr Opin Cell Biol, 2020, 65: 103- 111. DOI: 10.1016/j.ceb.2020.04.010.
|
| [21] |
MENZIES SA, VOLKMAR N, van den BOOMEN DJ, et al. The sterol-responsive RNF145 E3 ubiquitin ligase mediates the degradation of HMG-CoA reductase together with gp78 and Hrd1[J]. eLife, 2018, 7: e40009. DOI: 10.7554/eLife.40009.
|
| [22] |
ALI N, ALLAM H, BADER T, et al. Fluvastatin interferes with hepatitis C virus replication via microtubule bundling and a doublecortin-like kinase-mediated mechanism[J]. PLoS One, 2013, 8( 11): e80304. DOI: 10.1371/journal.pone.0080304.
|
| [23] |
ALANNAN M, TRÉZÉGUET V, AMOÊDO ND, et al. Rewiring lipid metabolism by targeting PCSK9 and HMGCR to treat liver cancer[J]. Cancers(Basel), 2022, 15( 1): 3. DOI: 10.3390/cancers15010003.
|
| [24] |
JIANG W, HU JW, HE XR, et al. Statins: A repurposed drug to fight cancer[J]. J Exp Clin Cancer Res, 2021, 40( 1): 241. DOI: 10.1186/s13046-021-02041-2.
|
| [25] |
ESLAMI Z, AGHILI SS, GHAFI AG. Atorvastatin on treatment of nonalcoholic fatty liver disease patients[J]. Chonnam Med J, 2024, 60( 1): 13- 20. DOI: 10.4068/cmj.2024.60.1.13.
|
| [26] |
WANG HJ, LIU SY, ZHOU CJ, et al. Fatal hepatic failure following atorvastatin treatment: A case report[J]. Medicine(Baltimore), 2023, 102( 19): e33743. DOI: 10.1097/MD.0000000000033743.
|
| [27] |
TORRE P, AGLITTI A, MASARONE M, et al. Viral hepatitis: Milestones, unresolved issues, and future goals[J]. World J Gastroenterol, 2021, 27( 28): 4603- 4638. DOI: 10.3748/wjg.v27.i28.4603.
|
| [28] |
GLITSCHER M, HILDT E. Endosomal cholesterol in viral infections- A common denominator?[J]. Front Physiol, 2021, 12: 750544. DOI: 10.3389/fphys.2021.750544.
|
| [29] |
HSU CS, LIU WL, LI QS, et al. Hepatitis C virus genotypes 1-3 infections regulate lipogenic signaling and suppress cholesterol biosynthesis in hepatocytes[J]. J Formos Med Assoc, 2020, 119( 9): 1382- 1395. DOI: 10.1016/j.jfma.2020.03.018.
|
| [30] |
LI YJ, ZHU P, LIANG Y, et al. Hepatitis B virus induces expression of cholesterol metabolism-related genes via TLR2 in HepG2 cells[J]. World J Gastroenterol, 2013, 19( 14): 2262- 2269. DOI: 10.3748/wjg.v19.i14.2262.
|
| [31] |
LIN SH, HUANG KJ, WENG CF, et al. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening[J]. Drug Des Devel Ther, 2015, 9: 3313- 3324. DOI: 10.2147/DDDT.S84641.
|
| [32] |
THONGSRI P, PEWKLIANG Y, BORWORNPINYO S, et al. Curcumin inhibited hepatitis B viral entry through NTCP binding[J]. Sci Rep, 2021, 11( 1): 19125. DOI: 10.1038/s41598-021-98243-x.
|
| [33] |
NAN C. Predictive value of triglyceride to high density lipoprotein cholesterol ratio combined with γ-glutamyl transpeptidase in nonalcoholic fatty liver disease[J]. Hebei Med J, 2023, 45( 3): 385- 387, 391. DOI: 10.3969/j.issn.1002-7386.2023.03.015.
南忱. 三酰甘油与高密度脂蛋白胆固醇比值联合γ-谷氨酰转肽酶对非酒精性脂肪性肝病的预测价值[J]. 河北医药, 2023, 45( 3): 385- 387, 391. DOI: 10.3969/j.issn.1002-7386.2023.03.015.
|
| [34] |
TEWARI DN, BISWAS A, CHAKRABARTI AK, et al. AMFR promotes innate immunity activation and proteasomal degradation of HMGCR in response to influenza virus infection in A549 cells[J]. Virology, 2023, 587: 109875. DOI: 10.1016/j.virol.2023.109875.
|
| [35] |
LI XZ, JIANG SY, LI GQ, et al. Synthesis of heterocyclic ring-fused analogs of HMG499 as novel degraders of HMG-CoA reductase that lower cholesterol[J]. Eur J Med Chem, 2022, 236: 114323. DOI: 10.1016/j.ejmech.2022.114323.
|
| [36] |
LI ZY, ZHOU Y, JIA KW, et al. JMJD4-demethylated RIG-I prevents hepatic steatosis and carcinogenesis[J]. J Hematol Oncol, 2022, 15( 1): 161. DOI: 10.1186/s13045-022-01381-6.
|
| [37] |
HONG T, ZOU J, YANG J, et al. Curcumin protects against bisphenol A-induced hepatic steatosis by inhibiting cholesterol absorption and synthesis in CD-1 mice[J]. Food Sci Nutr, 2023, 11( 9): 5091- 5101. DOI: 10.1002/fsn3.3468.
|
| [38] |
ZHAO CZ, JIANG W, ZHU YY, et al. Highland barley Monascus purpureus Went extract ameliorates high-fat, high-fructose, high-cholesterol diet induced nonalcoholic fatty liver disease by regulating lipid metabolism in golden hamsters[J]. J Ethnopharmacol, 2022, 286: 114922. DOI: 10.1016/j.jep.2021.114922.
|
| [39] |
TONG J, LAN XT, ZHANG Z, et al. Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: Potential involvement of PANoptosis[J]. Acta Pharmacol Sin, 2023, 44( 5): 1014- 1028. DOI: 10.1038/s41401-022-01010-5.
|
| [40] |
RAZA S, RAJAK S, UPADHYAY A, et al. Current treatment paradigms and emerging therapies for NAFLD/NASH[J]. Front Biosci(Landmark Ed), 2021, 26( 2): 206- 237. DOI: 10.2741/4892.
|
| [41] |
KAMINSKY-KOLESNIKOV Y, RAUCHBACH E, ABU-HALAKA D, et al. Cholesterol induces Nrf-2- and HIF-1 α-dependent hepatocyte proliferation and liver regeneration to ameliorate bile acid toxicity in mouse models of NASH and fibrosis[J]. Oxid Med Cell Longev, 2020, 2020: 5393761. DOI: 10.1155/2020/5393761.
|
| [42] |
VIJAYAN DK, PERUMCHERRY RAMAN S, DARA PK, et al. In vivo anti-lipidemic and antioxidant potential of collagen peptides obtained from great hammerhead shark skin waste[J]. J Food Sci Technol, 2022, 59( 3): 1140- 1151. DOI: 10.1007/s13197-021-05118-0.
|
| [43] |
GUO J, XIE YA. Advances in the mechanism of immune microenvironment regulation of metastatic liver cancer[J]. Hebei Med J, 2023, 45( 8): 1238- 1243.
郭驹, 谢裕安. 免疫微环境调控转移性肝癌机制研究进展[J]. 河北医药, 2023, 45( 8): 1238- 1243.
|
| [44] |
SAITO Y, YIN DZ, KUBOTA N, et al. A therapeutically targetable TAZ-TEAD2 pathway drives the growth of hepatocellular carcinoma via ANLN and KIF23[J]. Gastroenterology, 2023, 164( 7): 1279- 1292. DOI: 10.1053/j.gastro.2023.02.043.
|
| [45] |
LI FY, WANG MG, MAO DW, et al. Association of lipid metabolism reprogramming with the development and progression of primary liver cancer[J]. J Clin Hepatol, 2024, 40( 8): 1688- 1692. DOI: 10.12449/JCH240829.
李飞燕, 王明刚, 毛德文, 等. 脂代谢重编程与原发性肝癌发生发展的关系[J]. 临床肝胆病杂志, 2024, 40( 8): 1688- 1692. DOI: 10.12449/JCH240829.
|
| [46] |
FASOLATO S, PIGOZZO S, PONTISSO P, et al. PCSK9 levels are raised in chronic HCV patients with hepatocellular carcinoma[J]. J Clin Med, 2020, 9( 10): 3134. DOI: 10.3390/jcm9103134.
|
| [47] |
ROSOFF DB, BELL AS, WAGNER J, et al. Assessing the impact of PCSK9 and HMGCR inhibition on liver function: Drug-target mendelian randomization analyses in four ancestries[J]. Cell Mol Gastroenterol Hepatol, 2024, 17( 1): 29- 40. DOI: 10.1016/j.jcmgh.2023.09.001.
|
| [48] |
ZHANG SZ, ZHU XD, FENG LH, et al. PCSK9 promotes tumor growth by inhibiting tumor cell apoptosis in hepatocellular carcinoma[J]. Exp Hematol Oncol, 2021, 10( 1): 25. DOI: 10.1186/s40164-021-00218-1.
|
| [49] |
CHE L, CHI WN, QIAO Y, et al. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans[J]. Gut, 2020, 69( 1): 177- 186. DOI: 10.1136/gutjnl-2018-317581.
|
| [50] |
WEI MK, NURJANAH U, HERKILINI A, et al. Unspliced XBP1 contributes to cholesterol biosynthesis and tumorigenesis by stabilizing SREBP2 in hepatocellular carcinoma[J]. Cell Mol Life Sci, 2022, 79( 9): 472. DOI: 10.1007/s00018-022-04504-x.
|
| [51] |
CHEN JR, DING CF, CHEN YH, et al. ACSL4 reprograms fatty acid metabolism in hepatocellular carcinoma via c-Myc/SREBP1 pathway[J]. Cancer Lett, 2021, 502: 154- 165. DOI: 10.1016/j.canlet.2020.12.019.
|
| [52] |
WANG HY, SHU L, LV CR, et al. BRCC36 deubiquitinates HMGCR to regulate the interplay between ferroptosis and pyroptosis[J]. Adv Sci(Weinh), 2024, 11( 11): e2304263. DOI: 10.1002/advs.202304263.
|
| [53] |
SELITSKY SR, DINH TA, TOTH CL, et al. Transcriptomic analysis of chronic hepatitis B and C and liver cancer reveals microRNA-mediated control of cholesterol synthesis programs[J]. mBio, 2015, 6( 6): e01500-15. DOI: 10.1128/mBio.01500-15.
|
| [54] |
DING WJ, CHEN LL, XIA JG, et al. Causal association between lipid-lowering drugs and cancers: A drug target Mendelian randomization study[J]. Medicine(Baltimore), 2024, 103( 18): e38010. DOI: 10.1097/MD.0000000000038010.
|
| [55] |
JINDAL A, SARIN SK. Epidemiology of liver failure in Asia-Pacific Region[J]. Liver Int, 2022, 42( 9): 2093- 2109. DOI: 10.1111/liv.15328.
|
| [56] |
YANG C, YANG HS, HU JH, et al. Effect of serum total cholesterol level on prognosis of patients with liver failure[J]. Chin J Integr Tradit West Med Liver Dis, 2021, 31( 11): 1053- 1056. DOI: 10.3969/j.issn.1005-0264.2021.11.027.
杨诚, 杨华升, 胡建华, 等. 血清总胆固醇水平对肝衰竭患者预后的影响[J]. 中西医结合肝病杂志, 2021, 31( 11): 1053- 1056. DOI: 10.3969/j.issn.1005-0264.2021.11.027.
|
| [57] |
TANAKA S, de TYMOWSKI C, STERN J, et al. Relationship between liver dysfunction, lipoprotein concentration and mortality during sepsis[J]. PLoS One, 2022, 17( 8): e0272352. DOI: 10.1371/journal.pone.0272352.
|
| [58] |
ALVAREZ-SOLA G, URIARTE I, LATASA MU, et al. Bile acids, FGF15/19 and liver regeneration: From mechanisms to clinical applications[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864( 4 Pt B): 1326- 1334. DOI: 10.1016/j.bbadis.2017.06.025.
|
| [59] |
LIN Y, YAN GJ, FENG F, et al. Association between cholesterol and liver regeneration and its significance and potential value in clinical treatment of liver failure[J]. J Clin Hepatol, 2022, 38( 3): 708- 713. DOI: 10.3969/j.issn.1001-5256.2022.03.044.
林镛, 颜耿杰, 冯逢, 等. 胆固醇与肝再生关系及其在肝衰竭治疗中的意义和潜在价值[J]. 临床肝胆病杂志, 2022, 38( 3): 708- 713. DOI: 10.3969/j.issn.1001-5256.2022.03.044.
|
| [60] |
PENG J, YU JW, XU H, et al. Enhanced liver regeneration after partial hepatectomy in sterol regulatory element-binding protein(SREBP)-1c-null mice is associated with increased hepatocellular cholesterol availability[J]. Cell Physiol Biochem, 2018, 47( 2): 784- 799. DOI: 10.1159/000490030.
|
| [61] |
SLABBER CF, BACHOFNER M, SPEICHER T, et al. The ubiquitin ligase Uhrf2 is a master regulator of cholesterol biosynthesis and is essential for liver regeneration[J]. Sci Signal, 2023, 16( 787): eade8029. DOI: 10.1126/scisignal.ade8029.
|
| [62] |
LIEPINSH E, ZVEJNIECE L, CLEMENSSON L, et al. Hydroxymethylglutaryl-CoA reductase activity is essential for mitochondrial β-oxidation of fatty acids to prevent lethal accumulation of long-chain acylcarnitines in the mouse liver[J]. Br J Pharmacol, 2024, 181( 16): 2750- 2773. DOI: 10.1111/bph.16363.
|
| [63] |
DENG Y, ZHAO Z, SHELDON M, et al. LIFR regulates cholesterol-driven bidirectional hepatocyte-neutrophil cross-talk to promote liver regeneration[J]. Nat Metab, 2024, 6( 9): 1756- 1774. DOI: 10.1038/s42255-024-01110-y.
|
| [64] |
KOSHU K, MURAMATSU K, MARU T, et al. Neonatal onset of Niemann-Pick disease type C in a patient with cholesterol re-accumulation in the transplanted liver and inflammatory bowel disease[J]. Brain Dev, 2023, 45( 9): 517- 522. DOI: 10.1016/j.braindev.2023.06.006.
|