| [1] |
YANNY B, WINTERS A, BOUTROS S, et al. Hepatic encephalopathy challenges, burden, and diagnostic and therapeutic approach[J]. Clin Liver Dis, 2019, 23( 4): 607- 623. DOI: 10.1016/j.cld.2019.07.001.
|
| [2] |
ELSAID MI, RUSTGI VK. Epidemiology of hepatic encephalopathy[J]. Clin Liver Dis, 2020, 24( 2): 157- 174. DOI: 10.1016/j.cld.2020.01.001.
|
| [3] |
TAPPER EB, ABERASTURI D, ZHAO Z, et al. Outcomes after hepatic encephalopathy in population-based cohorts of patients with cirrhosis[J]. Aliment Pharmacol Ther, 2020, 51( 12): 1397- 1405. DOI: 10.1111/apt.15749.
|
| [4] |
MIRZAEI R, BOUZARI B, HOSSEINI-FARD SR, et al. Role of microbiota-derived short-chain fatty acids in nervous system disorders[J]. Biomed Pharmacother, 2021, 139: 111661. DOI: 10.1016/j.biopha.2021.111661.
|
| [5] |
FERNANDES J, SU W, RAHAT-ROZENBLOOM S, et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans[J]. Nutr Diabetes, 2014, 4( 6): e121. DOI: 10.1038/nutd.2014.23.
|
| [6] |
YANG HJ, KIM JH. Role of microbiome and its metabolite, short chain fatty acid in prostate cancer[J]. Investig Clin Urol, 2023, 64( 1): 3- 12. DOI: 10.4111/icu.20220370.
|
| [7] |
de VADDER F, KOVATCHEVA-DATCHARY P, GONCALVES D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156( 1-2): 84- 96. DOI: 10.1016/j.cell.2013.12.016.
|
| [8] |
BERGMAN EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species[J]. Physiol Rev, 1990, 70( 2): 567- 590. DOI: 10.1152/physrev.1990.70.2.567.
|
| [9] |
COMALADA M, BAILÓN E, DE HARO O, et al. The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype[J]. J Cancer Res Clin Oncol, 2006, 132( 8): 487- 497. DOI: 10.1007/s00432-006-0092-x.
|
| [10] |
MACHADO MG, PATENTE TA, ROUILLÉ Y, et al. Acetate improves the killing of Streptococcus pneumoniae by alveolar macrophages via NLRP3 inflammasome and glycolysis-HIF-1α axis[J]. Front Immunol, 2022, 13: 773261. DOI: 10.3389/fimmu.2022.773261.
|
| [11] |
LANGE O, PROCZKO-STEPANIAK M, MIKA A. Short-chain fatty acids-a product of the microbiome and its participation in two-way communication on the microbiome-host mammal line[J]. Curr Obes Rep, 2023, 12( 2): 108- 126. DOI: 10.1007/s13679-023-00503-6.
|
| [12] |
YANG M, ZHANG CY. G protein-coupled receptors as potential targets for nonalcoholic fatty liver disease treatment[J]. World J Gastroenterol, 2021, 27( 8): 677- 691. DOI: 10.3748/wjg.v27.i8.677.
|
| [13] |
ZHANG L, SHI XH, QIU HM, et al. Protein modification by short-chain fatty acid metabolites in sepsis: A comprehensive review[J]. Front Immunol, 2023, 14: 1171834. DOI: 10.3389/fimmu.2023.1171834.
|
| [14] |
KAISAR MMM, PELGROM LR, VAN DER HAM AJ, et al. Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling[J]. Front Immunol, 2017, 8: 1429. DOI: 10.3389/fimmu.2017.01429.
|
| [15] |
LIU L, LI L, MIN J, et al. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells[J]. Cell Immunol, 2012, 277( 1-2): 66- 73. DOI: 10.1016/j.cellimm.2012.05.011.
|
| [16] |
NASTASI C, FREDHOLM S, WILLERSLEV-OLSEN A, et al. Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells[J]. Sci Rep, 2017, 7( 1): 14516. DOI: 10.1038/s41598-017-15099-w.
|
| [17] |
TAN J, MCKENZIE C, VUILLERMIN PJ, et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways[J]. Cell Rep, 2016, 15( 12): 2809- 2824. DOI: 10.1016/j.celrep.2016.05.047.
|
| [18] |
SCHULTHESS J, PANDEY S, CAPITANI M, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages[J]. Immunity, 2019, 50( 2): 432- 445. DOI: 10.1016/j.immuni.2018.12.018.
|
| [19] |
CHANG PV, HAO LM, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci U S A, 2014, 111( 6): 2247- 2252. DOI: 10.1073/pnas.1322269111.
|
| [20] |
HUANG CR, DU W, NI YM, et al. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo[J]. Clin Exp Immunol, 2022, 207( 1): 53- 64. DOI: 10.1093/cei/uxab028.
|
| [21] |
LI GF, LIN J, ZHANG C, et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease[J]. Gut Microbes, 2021, 13( 1): 1968257. DOI: 10.1080/19490976.2021.1968257.
|
| [22] |
AOYAMA M, KOTANI J, USAMI M. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways[J]. Nutrition, 2010, 26( 6): 653- 661. DOI: 10.1016/j.nut.2009.07.006.
|
| [23] |
VINOLO MA, RODRIGUES HG, HATANAKA E, et al. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils[J]. J Nutr Biochem, 2011, 22( 9): 849- 855. DOI: 10.1016/j.jnutbio.2010.07.009.
|
| [24] |
TEDELIND S, WESTBERG F, KJERRULF M, et al. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease[J]. World J Gastroenterol, 2007, 13( 20): 2826- 2832. DOI: 10.3748/wjg.v13.i20.2826.
|
| [25] |
THEILER A, BÄRNTHALER T, PLATZER W, et al. Butyrate ameliorates allergic airway inflammation by limiting eosinophil trafficking and survival[J]. J Allergy Clin Immunol, 2019, 144( 3): 764- 776. DOI: 10.1016/j.jaci.2019.05.002.
|
| [26] |
SHI YB, XU MZ, PAN S, et al. Induction of the apoptosis, degranulation and IL-13 production of human basophils by butyrate and propionate via suppression of histone deacetylation[J]. Immunology, 2021, 164( 2): 292- 304. DOI: 10.1111/imm.13370.
|
| [27] |
FACHI JL, SÉCCA C, RODRIGUES PB, et al. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2[J]. J Exp Med, 2020, 217( 3): e20190489. DOI: 10.1084/jem.20190489.
|
| [28] |
SERAFINI N, JARADE A, SURACE L, et al. Trained ILC3 responses promote intestinal defense[J]. Science, 2022, 375( 6583): 859- 863. DOI: 10.1126/science.aaz8777.
|
| [29] |
YANG WJ, YU TM, HUANG XS, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity[J]. Nat Commun, 2020, 11( 1): 4457. DOI: 10.1038/s41467-020-18262-6.
|
| [30] |
THIO CL, CHI PY, LAI AC, et al. Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate[J]. J Allergy Clin Immunol, 2018, 142( 6): 1867- 1883. DOI: 10.1016/j.jaci.2018.02.032.
|
| [31] |
CHUN E, LAVOIE S, FONSECA-PEREIRA D, et al. Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity[J]. Immunity, 2019, 51( 5): 871- 884. DOI: 10.1016/j.immuni.2019.09.014.
|
| [32] |
KIBBIE JJ, DILLON SM, THOMPSON TA, et al. Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase(HDAC) inhibition and GPR43 signaling[J]. Immunobiology, 2021, 226( 5): 152126. DOI: 10.1016/j.imbio.2021.152126.
|
| [33] |
FURUSAWA Y, OBATA Y, FUKUDA S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504( 7480): 446- 450. DOI: 10.1038/nature12721.
|
| [34] |
SINGH N, GURAV A, SIVAPRAKASAM S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40( 1): 128- 139. DOI: 10.1016/j.immuni.2013.12.007.
|
| [35] |
BACHEM A, MAKHLOUF C, BINGER KJ, et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells[J]. Immunity, 2019, 51( 2): 285- 297. DOI: 10.1016/j.immuni.2019.06.002.
|
| [36] |
MEYER F, SEIBERT FS, NIENEN M, et al. Propionate supplementation promotes the expansion of peripheral regulatory T-Cells in patients with end-stage renal disease[J]. J Nephrol, 2020, 33( 4): 817- 827. DOI: 10.1007/s40620-019-00694-z.
|
| [37] |
ARPAIA N, CAMPBELL C, FAN XY, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504( 7480): 451- 455. DOI: 10.1038/nature12726.
|
| [38] |
WU W, SUN M, CHEN F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43[J]. Mucosal Immunol, 2017, 10( 4): 946- 956. DOI: 10.1038/mi.2016.114.
|
| [39] |
DAÏEN CI, TAN J, AUDO R, et al. Gut-derived acetate promotes B10 cells with antiinflammatory effects[J]. JCI Insight, 2021, 6( 7): e144156. DOI: 10.1172/jci.insight.144156.
|
| [40] |
TIAN GX, PENG KP, YU Y, et al. Propionic acid regulates immune tolerant properties in B Cells[J]. J Cell Mol Med, 2022, 26( 10): 2766- 2776. DOI: 10.1111/jcmm.17287.
|
| [41] |
ROSSER EC, PIPER CJM, MATEI DE, et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells[J]. Cell Metab, 2020, 31( 4): 837- 851. DOI: 10.1016/j.cmet.2020.03.003.
|
| [42] |
KIM DS, WOO JS, MIN HK, et al. Short-chain fatty acid butyrate induces IL-10-producing B cells by regulating circadian-clock-related genes to ameliorate Sjögren’s syndrome[J]. J Autoimmun, 2021, 119: 102611. DOI: 10.1016/j.jaut.2021.102611.
|
| [43] |
SANCHEZ HN, MORONEY JB, GAN HQ, et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids[J]. Nat Commun, 2020, 11( 1): 60. DOI: 10.1038/s41467-019-13603-6.
|
| [44] |
BLOEMEN JG, VENEMA K, van de POLL MC, et al. Short chain fatty acids exchange across the gut and liver in humans measured at surgery[J]. Clin Nutr, 2009, 28( 6): 657- 661. DOI: 10.1016/j.clnu.2009.05.011.
|
| [45] |
LIWINSKI T, CASAR C, RUEHLEMANN MC, et al. A disease-specific decline of the relative abundance of Bifidobacterium in patients with autoimmune hepatitis[J]. Aliment Pharmacol Ther, 2020, 51( 12): 1417- 1428. DOI: 10.1111/apt.15754.
|
| [46] |
KUMMEN M, THINGHOLM LB, RÜHLEMANN MC, et al. Altered gut microbial metabolism of essential nutrients in primary sclerosing cholangitis[J]. Gastroenterology, 2021, 160( 5): 1784- 1798. DOI: 10.1053/j.gastro.2020.12.058.
|
| [47] |
CORNEJO-PAREJA I, AMIAR MR, OCAÑA-WILHELMI L, et al. Non-alcoholic fatty liver disease in patients with morbid obesity: The gut microbiota axis as a potential pathophysiology mechanism[J]. J Gastroenterol, 2024, 59( 4): 329- 341. DOI: 10.1007/s00535-023-02075-7.
|
| [48] |
BRÜSSOW H, PARKINSON SJ. You are what you eat[J]. Nat Biotechnol, 2014, 32( 3): 243- 245. DOI: 10.1038/nbt.2845.
|
| [49] |
DEN BESTEN G, BLEEKER A, GERDING A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation[J]. Diabetes, 2015, 64( 7): 2398- 2408. DOI: 10.2337/db14-1213.
|
| [50] |
DENG MJ, QU F, CHEN L, et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD[J]. J Endocrinol, 2020, 245( 3): 425- 437. DOI: 10.1530/JOE-20-0018.
|
| [51] |
WEI YR, LI YM, YAN L, et al. Alterations of gut microbiome in autoimmune hepatitis[J]. Gut, 2020, 69( 3): 569- 577. DOI: 10.1136/gutjnl-2018-317836.
|
| [52] |
AWONIYI M, WANG J, NGO B, et al. Protective and aggressive bacterial subsets and metabolites modify hepatobiliary inflammation and fibrosis in a murine model of PSC[J]. Gut, 2023, 72( 4): 671- 685. DOI: 10.1136/gutjnl-2021-326500.
|
| [53] |
SINGH V, YEOH BS, CHASSAING B, et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer[J]. Cell, 2018, 175( 3): 679- 694. DOI: 10.1016/j.cell.2018.09.004.
|
| [54] |
BEHARY J, AMORIM N, JIANG XT, et al. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma[J]. Nat Commun, 2021, 12( 1): 187. DOI: 10.1038/s41467-020-20422-7.
|
| [55] |
PRATT M, FORBES JD, KNOX NC, et al. Microbiome-mediated immune signaling in inflammatory bowel disease and colorectal cancer: Support from meta-omics data[J]. Front Cell Dev Biol, 2021, 9: 716604. DOI: 10.3389/fcell.2021.716604.
|
| [56] |
HANUS M, PARADA-VENEGAS D, LANDSKRON G, et al. Immune system, microbiota, and microbial metabolites: The unresolved triad in colorectal cancer microenvironment[J]. Front Immunol, 2021, 12: 612826. DOI: 10.3389/fimmu.2021.612826.
|
| [57] |
KIRUNDI J, MOGHADAMRAD S, URBANIAK C. Microbiome-liver crosstalk: A multihit therapeutic target for liver disease[J]. World J Gastroenterol, 2023, 29( 11): 1651- 1668. DOI: 10.3748/wjg.v29.i11.1651.
|
| [58] |
CUMMINGS JH, POMARE EW, BRANCH WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J]. Gut, 1987, 28( 10): 1221- 1227. DOI: 10.1136/gut.28.10.1221.
|
| [59] |
SIVAPRAKASAM S, BHUTIA YD, YANG SP, et al. Short-chain fatty acid transporters: Role in colonic homeostasis[J]. Compr Physiol, 2017, 8( 1): 299- 314. DOI: 10.1002/cphy.c170014.
|
| [60] |
FRANK DN, AMAND AL ST, FELDMAN RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases[J]. Proc Natl Acad Sci U S A, 2007, 104( 34): 13780- 13785. DOI: 10.1073/pnas.0706625104.
|
| [61] |
MIRZAEI R, AFAGHI A, BABAKHANI S, et al. Role of microbiota-derived short-chain fatty acids in cancer development and prevention[J]. Biomed Pharmacother, 2021, 139: 111619. DOI: 10.1016/j.biopha.2021.111619.
|
| [62] |
MA JY, PIAO XS, MAHFUZ S, et al. The interaction among gut microbes, the intestinal barrier and short chain fatty acids[J]. Anim Nutr, 2021, 9: 159- 174. DOI: 10.1016/j.aninu.2021.09.012.
|
| [63] |
PARADA VENEGAS D, de la FUENTE MK, LANDSKRON G, et al. Short chain fatty acids(SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 277. DOI: 10.3389/fimmu.2019.00277.
|
| [64] |
AGIRMAN G, YU KB, HSIAO EY. Signaling inflammation across the gut-brain axis[J]. Science, 2021, 374( 6571): 1087- 1092. DOI: 10.1126/science.abi6087.
|
| [65] |
ASHIQUE S, MOHANTO S, AHMED MG, et al. Gut-brain axis: A cutting-edge approach to target neurological disorders and potential synbiotic application[J]. Heliyon, 2024, 10( 13): e34092. DOI: 10.1016/j.heliyon.2024.e34092.
|
| [66] |
LIU JM, LI HJ, GONG TY, et al. Anti-neuroinflammatory effect of short-chain fatty acid acetate against Alzheimer’s disease via upregulating GPR41 and inhibiting ERK/JNK/NF-κB[J]. J Agric Food Chem, 2020, 68( 27): 7152- 7161. DOI: 10.1021/acs.jafc.0c02807.
|
| [67] |
CHEN RZ, XU Y, WU P, et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota[J]. Pharmacol Res, 2019, 148: 104403. DOI: 10.1016/j.phrs.2019.104403.
|
| [68] |
ERNY D, HRABĚ DE ANGELIS AL, JAITIN D, et al. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nat Neurosci, 2015, 18( 7): 965- 977. DOI: 10.1038/nn.4030.
|
| [69] |
BRANISTE V, AL-ASMAKH M, KOWAL C, et al. The gut microbiota influences blood-brain barrier permeability in mice[J]. Sci Transl Med, 2014, 6( 263): 263ra158. DOI: 10.1126/scitranslmed.3009759.
|
| [70] |
WYSS MT, MAGISTRETTI PJ, BUCK A, et al. Labeled acetate as a marker of astrocytic metabolism[J]. J Cereb Blood Flow Metab, 2011, 31( 8): 1668- 1674. DOI: 10.1038/jcbfm.2011.84.
|
| [71] |
KOH A, de VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165( 6): 1332- 1345. DOI: 10.1016/j.cell.2016.05.041.
|
| [72] |
PABST O, HORNEF MW, SCHAAP FG, et al. Gut-liver axis: Barriers and functional circuits[J]. Nat Rev Gastroenterol Hepatol, 2023, 20( 7): 447- 461. DOI: 10.1038/s41575-023-00771-6.
|
| [73] |
BLOOM PP, TAPPER EB, YOUNG VB, et al. Microbiome therapeutics for hepatic encephalopathy[J]. J Hepatol, 2021, 75( 6): 1452- 1464. DOI: 10.1016/j.jhep.2021.08.004.
|
| [74] |
BLOOM PP, LUÉVANO JM Jr, MILLER KJ, et al. Deep stool microbiome analysis in cirrhosis reveals an association between short-chain fatty acids and hepatic encephalopathy[J]. Ann Hepatol, 2021, 25: 100333. DOI: 10.1016/j.aohep.2021.100333.
|
| [75] |
WANG Q, CHEN CX, ZUO S, et al. Integrative analysis of the gut microbiota and faecal and serum short-chain fatty acids and tryptophan metabolites in patients with cirrhosis and hepatic encephalopathy[J]. J Transl Med, 2023, 21( 1): 395. DOI: 10.1186/s12967-023-04262-9.
|
| [76] |
BAJAJ JS. The role of microbiota in hepatic encephalopathy[J]. Gut Microbes, 2014, 5( 3): 397- 403. DOI: 10.4161/gmic.28684.
|
| [77] |
JUANOLA O, FERRUSQUÍA-ACOSTA J, GARCÍA-VILLALBA R, et al. Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis[J]. FASEB J, 2019, 33( 10): 11595- 11605. DOI: 10.1096/fj.201901327R.
|
| [78] |
ZHU RR, LIU LW, ZHANG GZ, et al. The pathogenesis of gut microbiota in hepatic encephalopathy by the gut-liver-brain axis[J]. Biosci Rep, 2023, 43( 6): BSR20222524. DOI: 10.1042/BSR20222524.
|