中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 5
May  2025
Turn off MathJax
Article Contents

Immunomodulatory effect of short-chain fatty acids in hepatic encephalopathy and its potential diagnostic value

DOI: 10.12449/JCH250523
Research funding:

Guangxi Key Research and Development Project (Guike AB22035076) ;

Regional Foundation of National Natural Science Foundation of China (82260899);

Innovation Project of Guangxi Graduate Education (YCBZ2024149);

Innovation Project of Guangxi Graduate Education (YCSW2024407);

Research Undertaking of the National Traditional Chinese Medicine Inheritance and Innovation Center (2023019-03);

Guangxi Traditional Chinese Medicine Zhuangyao Medicine Multidisciplinary Cross Innovation Team (GZKJ2301);

Guangxi Difficult and Severe TCM Diagnosis and Treatment Research Team (2022A001);

State Administration of Traditional Chinese Medicine High-level Key Discipline Construction Project of Traditional Chinese Medicine (zyyzdxk-2023166)

More Information
  • Corresponding author: FU Lei, lfu@gxtcmu.edu.cn (ORCID: 0009-0001-1600-3068); YAO Chun, yaoc@gxtcmu.edu.cn (ORCID: 0000-0003-2903-8814)
  • Received Date: 2024-09-18
  • Accepted Date: 2024-10-10
  • Published Date: 2025-05-25
  • Hepatic encephalopathy (HE) is a common complication of severe liver disease in the end stage, and it is urgently needed to improve the rate of effective treatment and clarify the pathogenesis of HE. The liver is a crucial hub for immune regulation, and disruption of immune homeostasis is a key factor in the pathological mechanisms of HE. As the main metabolites of intestinal flora, short-chain fatty acids (SCFAs) play a vital role in the biological processes of both innate and adaptive immunity and can regulate the proliferation and differentiation of immune cells maintain the homeostasis of intestinal microenvironment and the integrity of barrier function. Studies have shown that SCFAs participate in bidirectional and dynamic interactions with the liver-gut-brain axis through immunomodulatory pathways, thereby playing an important role in the diagnosis, treatment, and prognostic evaluation of HE. Starting from the immunoregulatory effect of SCFAs, this article summarizes and analyzes the crosstalk relationship between SCFAs and the liver-gut-brain axis and the significance of SCFAs in the diagnosis and treatment of HE, in order to provide new ideas for optimizing clinical prevention and treatment strategies.

     

  • loading
  • [1]
    YANNY B, WINTERS A, BOUTROS S, et al. Hepatic encephalopathy challenges, burden, and diagnostic and therapeutic approach[J]. Clin Liver Dis, 2019, 23( 4): 607- 623. DOI: 10.1016/j.cld.2019.07.001.
    [2]
    ELSAID MI, RUSTGI VK. Epidemiology of hepatic encephalopathy[J]. Clin Liver Dis, 2020, 24( 2): 157- 174. DOI: 10.1016/j.cld.2020.01.001.
    [3]
    TAPPER EB, ABERASTURI D, ZHAO Z, et al. Outcomes after hepatic encephalopathy in population-based cohorts of patients with cirrhosis[J]. Aliment Pharmacol Ther, 2020, 51( 12): 1397- 1405. DOI: 10.1111/apt.15749.
    [4]
    MIRZAEI R, BOUZARI B, HOSSEINI-FARD SR, et al. Role of microbiota-derived short-chain fatty acids in nervous system disorders[J]. Biomed Pharmacother, 2021, 139: 111661. DOI: 10.1016/j.biopha.2021.111661.
    [5]
    FERNANDES J, SU W, RAHAT-ROZENBLOOM S, et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans[J]. Nutr Diabetes, 2014, 4( 6): e121. DOI: 10.1038/nutd.2014.23.
    [6]
    YANG HJ, KIM JH. Role of microbiome and its metabolite, short chain fatty acid in prostate cancer[J]. Investig Clin Urol, 2023, 64( 1): 3- 12. DOI: 10.4111/icu.20220370.
    [7]
    de VADDER F, KOVATCHEVA-DATCHARY P, GONCALVES D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156( 1-2): 84- 96. DOI: 10.1016/j.cell.2013.12.016.
    [8]
    BERGMAN EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species[J]. Physiol Rev, 1990, 70( 2): 567- 590. DOI: 10.1152/physrev.1990.70.2.567.
    [9]
    COMALADA M, BAILÓN E, DE HARO O, et al. The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype[J]. J Cancer Res Clin Oncol, 2006, 132( 8): 487- 497. DOI: 10.1007/s00432-006-0092-x.
    [10]
    MACHADO MG, PATENTE TA, ROUILLÉ Y, et al. Acetate improves the killing of Streptococcus pneumoniae by alveolar macrophages via NLRP3 inflammasome and glycolysis-HIF-1α axis[J]. Front Immunol, 2022, 13: 773261. DOI: 10.3389/fimmu.2022.773261.
    [11]
    LANGE O, PROCZKO-STEPANIAK M, MIKA A. Short-chain fatty acids-a product of the microbiome and its participation in two-way communication on the microbiome-host mammal line[J]. Curr Obes Rep, 2023, 12( 2): 108- 126. DOI: 10.1007/s13679-023-00503-6.
    [12]
    YANG M, ZHANG CY. G protein-coupled receptors as potential targets for nonalcoholic fatty liver disease treatment[J]. World J Gastroenterol, 2021, 27( 8): 677- 691. DOI: 10.3748/wjg.v27.i8.677.
    [13]
    ZHANG L, SHI XH, QIU HM, et al. Protein modification by short-chain fatty acid metabolites in sepsis: A comprehensive review[J]. Front Immunol, 2023, 14: 1171834. DOI: 10.3389/fimmu.2023.1171834.
    [14]
    KAISAR MMM, PELGROM LR, VAN DER HAM AJ, et al. Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling[J]. Front Immunol, 2017, 8: 1429. DOI: 10.3389/fimmu.2017.01429.
    [15]
    LIU L, LI L, MIN J, et al. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells[J]. Cell Immunol, 2012, 277( 1-2): 66- 73. DOI: 10.1016/j.cellimm.2012.05.011.
    [16]
    NASTASI C, FREDHOLM S, WILLERSLEV-OLSEN A, et al. Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells[J]. Sci Rep, 2017, 7( 1): 14516. DOI: 10.1038/s41598-017-15099-w.
    [17]
    TAN J, MCKENZIE C, VUILLERMIN PJ, et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways[J]. Cell Rep, 2016, 15( 12): 2809- 2824. DOI: 10.1016/j.celrep.2016.05.047.
    [18]
    SCHULTHESS J, PANDEY S, CAPITANI M, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages[J]. Immunity, 2019, 50( 2): 432- 445. DOI: 10.1016/j.immuni.2018.12.018.
    [19]
    CHANG PV, HAO LM, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci U S A, 2014, 111( 6): 2247- 2252. DOI: 10.1073/pnas.1322269111.
    [20]
    HUANG CR, DU W, NI YM, et al. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo[J]. Clin Exp Immunol, 2022, 207( 1): 53- 64. DOI: 10.1093/cei/uxab028.
    [21]
    LI GF, LIN J, ZHANG C, et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease[J]. Gut Microbes, 2021, 13( 1): 1968257. DOI: 10.1080/19490976.2021.1968257.
    [22]
    AOYAMA M, KOTANI J, USAMI M. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways[J]. Nutrition, 2010, 26( 6): 653- 661. DOI: 10.1016/j.nut.2009.07.006.
    [23]
    VINOLO MA, RODRIGUES HG, HATANAKA E, et al. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils[J]. J Nutr Biochem, 2011, 22( 9): 849- 855. DOI: 10.1016/j.jnutbio.2010.07.009.
    [24]
    TEDELIND S, WESTBERG F, KJERRULF M, et al. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease[J]. World J Gastroenterol, 2007, 13( 20): 2826- 2832. DOI: 10.3748/wjg.v13.i20.2826.
    [25]
    THEILER A, BÄRNTHALER T, PLATZER W, et al. Butyrate ameliorates allergic airway inflammation by limiting eosinophil trafficking and survival[J]. J Allergy Clin Immunol, 2019, 144( 3): 764- 776. DOI: 10.1016/j.jaci.2019.05.002.
    [26]
    SHI YB, XU MZ, PAN S, et al. Induction of the apoptosis, degranulation and IL-13 production of human basophils by butyrate and propionate via suppression of histone deacetylation[J]. Immunology, 2021, 164( 2): 292- 304. DOI: 10.1111/imm.13370.
    [27]
    FACHI JL, SÉCCA C, RODRIGUES PB, et al. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2[J]. J Exp Med, 2020, 217( 3): e20190489. DOI: 10.1084/jem.20190489.
    [28]
    SERAFINI N, JARADE A, SURACE L, et al. Trained ILC3 responses promote intestinal defense[J]. Science, 2022, 375( 6583): 859- 863. DOI: 10.1126/science.aaz8777.
    [29]
    YANG WJ, YU TM, HUANG XS, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity[J]. Nat Commun, 2020, 11( 1): 4457. DOI: 10.1038/s41467-020-18262-6.
    [30]
    THIO CL, CHI PY, LAI AC, et al. Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate[J]. J Allergy Clin Immunol, 2018, 142( 6): 1867- 1883. DOI: 10.1016/j.jaci.2018.02.032.
    [31]
    CHUN E, LAVOIE S, FONSECA-PEREIRA D, et al. Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity[J]. Immunity, 2019, 51( 5): 871- 884. DOI: 10.1016/j.immuni.2019.09.014.
    [32]
    KIBBIE JJ, DILLON SM, THOMPSON TA, et al. Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase(HDAC) inhibition and GPR43 signaling[J]. Immunobiology, 2021, 226( 5): 152126. DOI: 10.1016/j.imbio.2021.152126.
    [33]
    FURUSAWA Y, OBATA Y, FUKUDA S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504( 7480): 446- 450. DOI: 10.1038/nature12721.
    [34]
    SINGH N, GURAV A, SIVAPRAKASAM S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40( 1): 128- 139. DOI: 10.1016/j.immuni.2013.12.007.
    [35]
    BACHEM A, MAKHLOUF C, BINGER KJ, et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells[J]. Immunity, 2019, 51( 2): 285- 297. DOI: 10.1016/j.immuni.2019.06.002.
    [36]
    MEYER F, SEIBERT FS, NIENEN M, et al. Propionate supplementation promotes the expansion of peripheral regulatory T-Cells in patients with end-stage renal disease[J]. J Nephrol, 2020, 33( 4): 817- 827. DOI: 10.1007/s40620-019-00694-z.
    [37]
    ARPAIA N, CAMPBELL C, FAN XY, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504( 7480): 451- 455. DOI: 10.1038/nature12726.
    [38]
    WU W, SUN M, CHEN F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43[J]. Mucosal Immunol, 2017, 10( 4): 946- 956. DOI: 10.1038/mi.2016.114.
    [39]
    DAÏEN CI, TAN J, AUDO R, et al. Gut-derived acetate promotes B10 cells with antiinflammatory effects[J]. JCI Insight, 2021, 6( 7): e144156. DOI: 10.1172/jci.insight.144156.
    [40]
    TIAN GX, PENG KP, YU Y, et al. Propionic acid regulates immune tolerant properties in B Cells[J]. J Cell Mol Med, 2022, 26( 10): 2766- 2776. DOI: 10.1111/jcmm.17287.
    [41]
    ROSSER EC, PIPER CJM, MATEI DE, et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells[J]. Cell Metab, 2020, 31( 4): 837- 851. DOI: 10.1016/j.cmet.2020.03.003.
    [42]
    KIM DS, WOO JS, MIN HK, et al. Short-chain fatty acid butyrate induces IL-10-producing B cells by regulating circadian-clock-related genes to ameliorate Sjögren’s syndrome[J]. J Autoimmun, 2021, 119: 102611. DOI: 10.1016/j.jaut.2021.102611.
    [43]
    SANCHEZ HN, MORONEY JB, GAN HQ, et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids[J]. Nat Commun, 2020, 11( 1): 60. DOI: 10.1038/s41467-019-13603-6.
    [44]
    BLOEMEN JG, VENEMA K, van de POLL MC, et al. Short chain fatty acids exchange across the gut and liver in humans measured at surgery[J]. Clin Nutr, 2009, 28( 6): 657- 661. DOI: 10.1016/j.clnu.2009.05.011.
    [45]
    LIWINSKI T, CASAR C, RUEHLEMANN MC, et al. A disease-specific decline of the relative abundance of Bifidobacterium in patients with autoimmune hepatitis[J]. Aliment Pharmacol Ther, 2020, 51( 12): 1417- 1428. DOI: 10.1111/apt.15754.
    [46]
    KUMMEN M, THINGHOLM LB, RÜHLEMANN MC, et al. Altered gut microbial metabolism of essential nutrients in primary sclerosing cholangitis[J]. Gastroenterology, 2021, 160( 5): 1784- 1798. DOI: 10.1053/j.gastro.2020.12.058.
    [47]
    CORNEJO-PAREJA I, AMIAR MR, OCAÑA-WILHELMI L, et al. Non-alcoholic fatty liver disease in patients with morbid obesity: The gut microbiota axis as a potential pathophysiology mechanism[J]. J Gastroenterol, 2024, 59( 4): 329- 341. DOI: 10.1007/s00535-023-02075-7.
    [48]
    BRÜSSOW H, PARKINSON SJ. You are what you eat[J]. Nat Biotechnol, 2014, 32( 3): 243- 245. DOI: 10.1038/nbt.2845.
    [49]
    DEN BESTEN G, BLEEKER A, GERDING A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation[J]. Diabetes, 2015, 64( 7): 2398- 2408. DOI: 10.2337/db14-1213.
    [50]
    DENG MJ, QU F, CHEN L, et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD[J]. J Endocrinol, 2020, 245( 3): 425- 437. DOI: 10.1530/JOE-20-0018.
    [51]
    WEI YR, LI YM, YAN L, et al. Alterations of gut microbiome in autoimmune hepatitis[J]. Gut, 2020, 69( 3): 569- 577. DOI: 10.1136/gutjnl-2018-317836.
    [52]
    AWONIYI M, WANG J, NGO B, et al. Protective and aggressive bacterial subsets and metabolites modify hepatobiliary inflammation and fibrosis in a murine model of PSC[J]. Gut, 2023, 72( 4): 671- 685. DOI: 10.1136/gutjnl-2021-326500.
    [53]
    SINGH V, YEOH BS, CHASSAING B, et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer[J]. Cell, 2018, 175( 3): 679- 694. DOI: 10.1016/j.cell.2018.09.004.
    [54]
    BEHARY J, AMORIM N, JIANG XT, et al. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma[J]. Nat Commun, 2021, 12( 1): 187. DOI: 10.1038/s41467-020-20422-7.
    [55]
    PRATT M, FORBES JD, KNOX NC, et al. Microbiome-mediated immune signaling in inflammatory bowel disease and colorectal cancer: Support from meta-omics data[J]. Front Cell Dev Biol, 2021, 9: 716604. DOI: 10.3389/fcell.2021.716604.
    [56]
    HANUS M, PARADA-VENEGAS D, LANDSKRON G, et al. Immune system, microbiota, and microbial metabolites: The unresolved triad in colorectal cancer microenvironment[J]. Front Immunol, 2021, 12: 612826. DOI: 10.3389/fimmu.2021.612826.
    [57]
    KIRUNDI J, MOGHADAMRAD S, URBANIAK C. Microbiome-liver crosstalk: A multihit therapeutic target for liver disease[J]. World J Gastroenterol, 2023, 29( 11): 1651- 1668. DOI: 10.3748/wjg.v29.i11.1651.
    [58]
    CUMMINGS JH, POMARE EW, BRANCH WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J]. Gut, 1987, 28( 10): 1221- 1227. DOI: 10.1136/gut.28.10.1221.
    [59]
    SIVAPRAKASAM S, BHUTIA YD, YANG SP, et al. Short-chain fatty acid transporters: Role in colonic homeostasis[J]. Compr Physiol, 2017, 8( 1): 299- 314. DOI: 10.1002/cphy.c170014.
    [60]
    FRANK DN, AMAND AL ST, FELDMAN RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases[J]. Proc Natl Acad Sci U S A, 2007, 104( 34): 13780- 13785. DOI: 10.1073/pnas.0706625104.
    [61]
    MIRZAEI R, AFAGHI A, BABAKHANI S, et al. Role of microbiota-derived short-chain fatty acids in cancer development and prevention[J]. Biomed Pharmacother, 2021, 139: 111619. DOI: 10.1016/j.biopha.2021.111619.
    [62]
    MA JY, PIAO XS, MAHFUZ S, et al. The interaction among gut microbes, the intestinal barrier and short chain fatty acids[J]. Anim Nutr, 2021, 9: 159- 174. DOI: 10.1016/j.aninu.2021.09.012.
    [63]
    PARADA VENEGAS D, de la FUENTE MK, LANDSKRON G, et al. Short chain fatty acids(SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 277. DOI: 10.3389/fimmu.2019.00277.
    [64]
    AGIRMAN G, YU KB, HSIAO EY. Signaling inflammation across the gut-brain axis[J]. Science, 2021, 374( 6571): 1087- 1092. DOI: 10.1126/science.abi6087.
    [65]
    ASHIQUE S, MOHANTO S, AHMED MG, et al. Gut-brain axis: A cutting-edge approach to target neurological disorders and potential synbiotic application[J]. Heliyon, 2024, 10( 13): e34092. DOI: 10.1016/j.heliyon.2024.e34092.
    [66]
    LIU JM, LI HJ, GONG TY, et al. Anti-neuroinflammatory effect of short-chain fatty acid acetate against Alzheimer’s disease via upregulating GPR41 and inhibiting ERK/JNK/NF-κB[J]. J Agric Food Chem, 2020, 68( 27): 7152- 7161. DOI: 10.1021/acs.jafc.0c02807.
    [67]
    CHEN RZ, XU Y, WU P, et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota[J]. Pharmacol Res, 2019, 148: 104403. DOI: 10.1016/j.phrs.2019.104403.
    [68]
    ERNY D, HRABĚ DE ANGELIS AL, JAITIN D, et al. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nat Neurosci, 2015, 18( 7): 965- 977. DOI: 10.1038/nn.4030.
    [69]
    BRANISTE V, AL-ASMAKH M, KOWAL C, et al. The gut microbiota influences blood-brain barrier permeability in mice[J]. Sci Transl Med, 2014, 6( 263): 263ra158. DOI: 10.1126/scitranslmed.3009759.
    [70]
    WYSS MT, MAGISTRETTI PJ, BUCK A, et al. Labeled acetate as a marker of astrocytic metabolism[J]. J Cereb Blood Flow Metab, 2011, 31( 8): 1668- 1674. DOI: 10.1038/jcbfm.2011.84.
    [71]
    KOH A, de VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165( 6): 1332- 1345. DOI: 10.1016/j.cell.2016.05.041.
    [72]
    PABST O, HORNEF MW, SCHAAP FG, et al. Gut-liver axis: Barriers and functional circuits[J]. Nat Rev Gastroenterol Hepatol, 2023, 20( 7): 447- 461. DOI: 10.1038/s41575-023-00771-6.
    [73]
    BLOOM PP, TAPPER EB, YOUNG VB, et al. Microbiome therapeutics for hepatic encephalopathy[J]. J Hepatol, 2021, 75( 6): 1452- 1464. DOI: 10.1016/j.jhep.2021.08.004.
    [74]
    BLOOM PP, LUÉVANO JM Jr, MILLER KJ, et al. Deep stool microbiome analysis in cirrhosis reveals an association between short-chain fatty acids and hepatic encephalopathy[J]. Ann Hepatol, 2021, 25: 100333. DOI: 10.1016/j.aohep.2021.100333.
    [75]
    WANG Q, CHEN CX, ZUO S, et al. Integrative analysis of the gut microbiota and faecal and serum short-chain fatty acids and tryptophan metabolites in patients with cirrhosis and hepatic encephalopathy[J]. J Transl Med, 2023, 21( 1): 395. DOI: 10.1186/s12967-023-04262-9.
    [76]
    BAJAJ JS. The role of microbiota in hepatic encephalopathy[J]. Gut Microbes, 2014, 5( 3): 397- 403. DOI: 10.4161/gmic.28684.
    [77]
    JUANOLA O, FERRUSQUÍA-ACOSTA J, GARCÍA-VILLALBA R, et al. Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis[J]. FASEB J, 2019, 33( 10): 11595- 11605. DOI: 10.1096/fj.201901327R.
    [78]
    ZHU RR, LIU LW, ZHANG GZ, et al. The pathogenesis of gut microbiota in hepatic encephalopathy by the gut-liver-brain axis[J]. Biosci Rep, 2023, 43( 6): BSR20222524. DOI: 10.1042/BSR20222524.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (615) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return