| [1] |
TARANTINO G. NAFLD or MAFLD: That is the conundrum[J]. Hepatobiliary Pancreat Dis Int, 2022, 21( 2): 103- 105. DOI: 10.1016/j.hbpd.2022.01.008.
|
| [2] |
TIAN AP, YANG YF. Diagnosis of nonalcoholic fatty liver disease: The importance of pathology[J]. J Clin Hepatol, 2023, 39( 3): 491- 497. DOI: 10.3969/j.issn.1001-5256.2023.03.002.
田爱平, 杨永峰. 非酒精性脂肪性肝病诊断: 病理的重要性[J]. 临床肝胆病杂志, 2023, 39( 3): 491- 497. DOI: 10.3969/j.issn.1001-5256.2023.03.002.
|
| [3] |
MARJOT T, RAY DW, TOMLINSON JW. Is it time for chronopharmacology in NASH?[J]. J Hepatol, 2022, 76( 5): 1215- 1224. DOI: 10.1016/j.jhep.2021.12.039.
|
| [4] |
HUANG DQ, EL-SERAG HB, LOOMBA R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2021, 18( 4): 223- 238. DOI: 10.1038/s41575-020-00381-6.
|
| [5] |
CHEN H, ZHOU Y, HAO HP, et al. Emerging mechanisms of non-alcoholic steatohepatitis and novel drug therapies[J]. Chin J Nat Med, 2024, 22( 8): 724- 745. DOI: 10.1016/S1875-5364(24)60690-4.
|
| [6] |
HUBY T, GAUTIER EL. Immune cell-mediated features of non-alcoholic steatohepatitis[J]. Nat Rev Immunol, 2022, 22( 7): 429- 443. DOI: 10.1038/s41577-021-00639-3.
|
| [7] |
LI L, LI SH, JIANG JP, et al. Investigating pharmacological mechanisms of andrographolide on non-alcoholic steatohepatitis(NASH): A bioinformatics approach of network pharmacology[J]. Chin Herb Med, 2021, 13( 3): 342- 350. DOI: 10.1016/j.chmed.2021.05.001.
|
| [8] |
UNGER LW, HERAC M, STAUFER K, et al. The post-transplant course of patients undergoing liver transplantation for nonalcoholic steatohepatitis versus cryptogenic cirrhosis: A retrospective case-control study[J]. Eur J Gastroenterol Hepatol, 2017, 29( 3): 309- 316. DOI: 10.1097/MEG.0000000000000794.
|
| [9] |
DENG ZQ, FAN T, XIAO C, et al. TGF-β signaling in health, disease, and therapeutics[J]. Signal Transduct Target Ther, 2024, 9( 1): 61. DOI: 10.1038/s41392-024-01764-w.
|
| [10] |
KUMAR R, THEISS AL, VENUPRASAD K. ROR-γt protein modifications and IL-17-mediated inflammation[J]. Trends Immunol, 2021, 42( 11): 1037- 1050. DOI: 10.1016/j.it.2021.09.005.
|
| [11] |
WU B, WAN YS. Molecular control of pathogenic Th17 cells in autoimmune diseases[J]. Int Immunopharmacol, 2020, 80: 106187. DOI: 10.1016/j.intimp.2020.106187.
|
| [12] |
LI N, YAMAMOTO G, FUJI H, et al. Interleukin-17 in liver disease pathogenesis[J]. Semin Liver Dis, 2021, 41( 4): 507- 515. DOI: 10.1055/s-0041-1730926.
|
| [13] |
CHEN L, ZHAO Q, YANG M, et al. Effects of Quzhi Yugan decoction on IL-17 and IL-2 in NASH rats based on JAK2-STAT3 signaling pathway[J]. Liaoning J Tradit Chin Med, 2023, 50( 8): 215- 220, 257. DOI: 10.13192/j.issn.1000-1719.2023.08.058.
陈亮, 赵琦, 杨梅, 等. 基于JAK2-STAT3信号通路探讨祛脂愈肝对NASH模型大鼠IL-17、IL-2的影响[J]. 辽宁中医杂志, 2023, 50( 8): 215- 220, 257. DOI: 10.13192/j.issn.1000-1719.2023.08.058.
|
| [14] |
SINGER M, ELSAYED AM, HUSSEINY MI. Regulatory T-cells: The face-off of the immune balance[J]. Front Biosci(Landmark Ed), 2024, 29( 11): 377. DOI: 10.31083/j.fbl2911377.
|
| [15] |
WING JB, TANAKA A, SAKAGUCHI S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer[J]. Immunity, 2019, 50( 2): 302- 316. DOI: 10.1016/j.immuni.2019.01.020.
|
| [16] |
VELLIOU RI, MITROULIS I, CHATZIGEORGIOU A. Neutrophil extracellular traps contribute to the development of hepatocellular carcinoma in NASH by promoting Treg differentiation[J]. Hepatobiliary Surg Nutr, 2022, 11( 3): 415- 418. DOI: 10.21037/hbsn-21-557.
|
| [17] |
HE BH, WU LY, XIE W, et al. The imbalance of Th17/Treg cells is involved in the progression of nonalcoholic fatty liver disease in mice[J]. BMC Immunol, 2017, 18( 1): 33. DOI: 10.1186/s12865-017-0215-y.
|
| [18] |
CHACKELEVICIUS CM, GAMBARO SE, TIRIBELLI C, et al. Th17 involvement in nonalcoholic fatty liver disease progression to non-alcoholic steatohepatitis[J]. World J Gastroenterol, 2016, 22( 41): 9096- 9103. DOI: 10.3748/wjg.v22.i41.9096.
|
| [19] |
ZHANG DJ, HOU J. Research advances in regulation of non-alcoholic steatohepatitis by liver immune cells[J]. Chin J Immun, 2025, 41( 2): 461- 466. DOI: 10.3969/j.issn.1000-484X.2025.02.035.
张丁吉, 侯晋. 肝脏免疫细胞调控非酒精性脂肪性肝炎的研究进展[J]. 中国免疫学杂志, 2025, 41( 2): 461- 466. DOI: 10.3969/j.issn.1000-484X.2025.02.035.
|
| [20] |
LI KY, ZHAO Q, HUANG J, et al. The role of Th17/Treg balance in non-alcoholic fatty liver disease[J]. Chin J Clin, 2024, 52( 6): 638- 641. DOI: 10.3969/j.issn.2095-8552.2024.06.003.
李开楊, 赵琦, 黄敬, 等. Th17/Treg平衡在非酒精性脂肪性肝病中的作用[J]. 中国临床医生杂志, 2024, 52( 6): 638- 641. DOI: 10.3969/j.issn.2095-8552.2024.06.003.
|
| [21] |
SUN L, LI B, QIU HK, et al. Significance of TH17/Treg cells in peripheral blood of patients with nonalcoholic fatty liver disease[J]. Chin J Integr Tradit West Med Dig, 2019, 27( 11): 858- 861. DOI: 10.3969/j.issn.1671-038X.2019.11.13.
孙亮, 李博, 邱厚匡, 等. 非酒精性脂肪性肝病患者外周血TH17/Treg细胞的变化及意义[J]. 中国中西医结合消化杂志, 2019, 27( 11): 858- 861. DOI: 10.3969/j.issn.1671-038X.2019.11.13.
|
| [22] |
YUAN YL, MAO TY, HAN HX, et al. Study on the mechanism of Yinchen Linggui Zhugan Decoction regulating Th17/Treg immune balance in nonalcoholic fatty liver disease mice[J]. Chin J Integr Tradit West Med Dig, 2024, 32( 2): 139- 144. DOI: 10.3969/j.issn.1671-038X.2024.02.10.
袁亚利, 毛堂友, 韩海啸, 等. 茵陈苓桂术甘汤对非酒精性脂肪性肝病Th17/Treg细胞免疫平衡的影响[J]. 中国中西医结合消化杂志, 2024, 32( 2): 139- 144. DOI: 10.3969/j.issn.1671-038X.2024.02.10.
|
| [23] |
JUNG HJ, CHO K, KIM SY, et al. Ethanol extract of Pharbitis nil ameliorates liver fibrosis through regulation of the TGFβ1-SMAD2/3 pathway[J]. J Ethnopharmacol, 2022, 294: 115370. DOI: 10.1016/j.jep.2022.115370.
|
| [24] |
SCHMIDT A, ÉLIÁS S, JOSHI RN, et al. In vitro differentiation of human CD4+FOXP3+ induced regulatory T cells(iTregs) from Naïve CD4+ T cells using a TGF-β-containing protocol[J]. J Vis Exp, 2016( 118): 55015. DOI: 10.3791/55015.
|
| [25] |
SUN GY, WEI YX, ZHU JJ, et al. The transcription factor T-bet promotes the pathogenesis of nonalcoholic fatty liver disease by upregulating intrahepatic inflammation[J]. Biochem Biophys Res Commun, 2023, 682: 266- 273. DOI: 10.1016/j.bbrc.2023.10.014.
|
| [26] |
GHORESCHI K, LAURENCE A, YANG XP, et al. Generation of pathogenic Th17 cells in the absence of TGF-β signalling[J]. Nature, 2010, 467( 7318): 967- 971. DOI: 10.1038/nature09447.
|
| [27] |
PAWLAK JB, BLOBE GC. TGF-β superfamily co-receptors in cancer[J]. Dev Dyn, 2022, 251( 1): 137- 163. DOI: 10.1002/dvdy.338.
|
| [28] |
HATA A, CHEN YG. TGF-β signaling from receptors to smads[J]. Cold Spring Harb Perspect Biol, 2016, 8( 9): a022061. DOI: 10.1101/cshperspect.a022061.
|
| [29] |
MIYAZAWA K, MIYAZONO K. Regulation of TGF-β family signaling by inhibitory Smads[J]. Cold Spring Harb Perspect Biol, 2017, 9( 3): a022095. DOI: 10.1101/cshperspect.a022095.
|
| [30] |
LEE H, YU DM, BAHN MS, et al. Hepatocyte-specific Prominin-1 protects against liver injury-induced fibrosis by stabilizing SMAD7[J]. Exp Mol Med, 2022, 54( 8): 1277- 1289. DOI: 10.1038/s12276-022-00831-y.
|
| [31] |
TZAVLAKI K, MOUSTAKAS A. TGF-β signaling[J]. Biomolecules, 2020, 10( 3): 487. DOI: 10.3390/biom10030487.
|
| [32] |
MONTELEONE G, LAUDISI F, STOLFI C. Smad7 as a positive regulator of intestinal inflammatory diseases[J]. Curr Res Immunol, 2023, 4: 100055. DOI: 10.1016/j.crimmu.2023.100055.
|
| [33] |
SONG Y, WEI JY, LI R, et al. Tyrosine kinase receptor B attenuates liver fibrosis by inhibiting TGF-β/SMAD signaling[J]. Hepatology, 2023, 78( 5): 1433- 1447. DOI: 10.1097/HEP.0000000000000319.
|
| [34] |
WAN ZK, ZHOU ZF, LIU Y, et al. Regulatory T cells and T helper 17 cells in viral infection[J]. Scand J Immunol, 2020, 91( 5): e12873. DOI: 10.1111/sji.12873.
|
| [35] |
FRICK CL, YARKA C, NUNNS H, et al. Sensing relative signal in the tgf-β/smad pathway[J]. Proc Natl Acad Sci U S A, 2017, 114( 14): E2975- E2982. DOI: 10.1073/pnas.1611428114.
|
| [36] |
XU Q, JIN XX, ZHENG MZ, et al. Phosphatase PP2A is essential for TH17 differentiation[J]. Proc Natl Acad Sci U S A, 2019, 116( 3): 982- 987. DOI: 10.1073/pnas.1807484116.
|
| [37] |
CHEN T, ZHU C, WANG X, et al. Asiatic acid encapsulated exosomes of hepatocellular carcinoma inhibit epithelial-mesenchymal transition through transforming growth factor beta/smad signaling pathway[J]. J Biomed Nanotechnol, 2021, 17( 12): 2338- 2350. DOI: 10.1166/jbn.2021.3208.
|
| [38] |
HE W, DORN DC, ERDJUMENT-BROMAGE H, et al. Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway[J]. Cell, 2006, 125( 5): 929- 941. DOI: 10.1016/j.cell.2006.03.045.
|
| [39] |
QIN G, WANG GZ, GUO DD, et al. Deletion of Smad4 reduces hepatic inflammation and fibrogenesis during nonalcoholic steatohepatitis progression[J]. J Dig Dis, 2018, 19( 5): 301- 313. DOI: 10.1111/1751-2980.12599.
|
| [40] |
YAN X, LIAO H, CHENG M, et al. Smad7 protein interacts with receptor-regulated Smads(R-Smads) to inhibit transforming growth factor-β(TGF-β)/Smad signaling[J]. J Biol Chem, 2016, 291( 1): 382- 392. DOI: 10.1074/jbc.M115.694281.
|
| [41] |
ZHANG TT, WEN F, WU YN, et al. Cross-talk between TGF-beta/SMAD and integrin signaling pathways in regulating hypertrophy of mesenchymal stem cell chondrogenesis under deferral dynamic compression[J]. Biomaterials, 2015, 38: 72- 85. DOI: 10.1016/j.biomaterials.2014.10.010.
|
| [42] |
PENG DD, FU MY, WANG MN, et al. Targeting TGF-β signal transduction for fibrosis and cancer therapy[J]. Mol Cancer, 2022, 21( 1): 104. DOI: 10.1186/s12943-022-01569-x.
|
| [43] |
ZHANG SP, HE Y, XU T, et al. Regulatory effects of total triterpenoid of Prunella vulgaris On activities of ERK and TGF-β1/Smad signaling pathway in protecting hepatic fibrosis in rats[J]. Chin Pharmacol Bull, 2015, 31( 2): 261- 266. DOI: 10.3969/j.issn.1001-1978.2015.02.023.
|
| [44] |
GU AD, WANG YQ, LIN L, et al. Requirements of transcription factor Smad-dependent and-independent TGF-β signaling to control discrete T-cell functions[J]. Proc Natl Acad Sci U S A, 2012, 109( 3): 905- 910. DOI: 10.1073/pnas.1108352109.
|
| [45] |
DINARVAND N, AFARIN R, SHAKERIAN E, et al. The effect of saraglitazar on TGF-β-induced smad3 phosphorylation and expression of genes related to liver fibrosis in LX2 cell line[J]. Mol Biol Rep, 2024, 51( 1): 541. DOI: 10.1007/s11033-024-09443-3.
|