| [1] |
GUNAYDIN M, BOZKURTER CIL AT. Progressive familial intrahepatic cholestasis: Diagnosis, management, and treatment[J]. Hepat Med, 2018, 10: 95- 104. DOI: 10.2147/HMER.S137209.
|
| [2] |
JONES-HUGHES T, CAMPBELL J, CRATHORNE L. Epidemiology and burden of progressive familial intrahepatic cholestasis: A systematic review[J]. Orphanet J Rare Dis, 2021, 16( 1): 255. DOI: 10.1186/s13023-021-01884-4.
|
| [3] |
VITALE G, GITTO S, VUKOTIC R, et al. Familial intrahepatic cholestasis: New and wide perspectives[J]. Dig Liver Dis, 2019, 51( 7): 922- 933. DOI: 10.1016/j.dld.2019.04.013.
|
| [4] |
PAULUSMA CC, GROEN A, KUNNE C, et al. Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport[J]. Hepatology, 2006, 44( 1): 195- 204. DOI: 10.1002/hep.21212.
|
| [5] |
BAI J, ZHENG SJ, DUAN ZP. Clinical features, diagnosis, and treatment strategies of progressive familial intrahepatic cholestasis[J]. Chin J Hepatol, 2021, 29( 11): 1128- 1131. DOI: 10.3760/cma.j.cn501113-20200306-00091.
白洁, 郑素军, 段钟平. 进行性家族性肝内胆汁淤积症的临床特征及诊疗思路[J]. 中华肝脏病杂志, 2021, 29( 11): 1128- 1131. DOI: 10.3760/cma.j.cn501113-20200306-00091.
|
| [6] |
AL-HUSSAINI A, LONE K, BASHIR MS, et al. ATP8B1 ABCB11 and ABCB4 genes defects: Novel mutations associated with cholestasis with different phenotypes and outcomes[J]. J Pediatr, 2021, 236: 113- 123. e 2. DOI: 10.1016/j.jpeds.2021.04.040.
|
| [7] |
BAKER A, KERKAR N, TODOROVA L, et al. Systematic review of progressive familial intrahepatic cholestasis[J]. Clin Res Hepatol Gastroenterol, 2019, 43( 1): 20- 36. DOI: 10.1016/j.clinre.2018.07.010.
|
| [8] |
van WESSEL DBE, THOMPSON RJ, GONZALES E, et al. Genotype correlates with the natural history of severe bile salt export pump deficiency[J]. J Hepatol, 2020, 73( 1): 84- 93. DOI: 10.1016/j.jhep.2020.02.007.
|
| [9] |
ALAM S, LAL BB. Recent updates on progressive familial intrahepatic cholestasis types 1, 2 and 3: Outcome and therapeutic strategies[J]. World J Hepatol, 2022, 14( 1): 98- 118. DOI: 10.4254/wjh.v14.i1.98.
|
| [10] |
FURUSE M, FUJITA K, HIIRAGI T, et al. Claudin-1 and-2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin[J]. J Cell Biol, 1998, 141( 7): 1539- 1550. DOI: 10.1083/jcb.141.7.1539.
|
| [11] |
SAMBROTTA M, THOMPSON RJ. Mutations in TJP2, encoding zona occludens 2, and liver disease[J]. Tissue Barriers, 2015, 3( 3): e1026537. DOI: 10.1080/21688370.2015.1026537.
|
| [12] |
ZHANG J, GUO S, MEI TL, et al. Novel mutation of the TJP2 gene in a Chinese child with progressive cholestatic liver disease coexistent with hearing impairment[J]. Hepatobiliary Pancreat Dis Int, 2021, 20( 2): 198- 200. DOI: 10.1016/j.hbpd.2020.10.004.
|
| [13] |
SAMBROTTA M, STRAUTNIEKS S, PAPOULI E, et al. Mutations in TJP2 cause progressive cholestatic liver disease[J]. Nat Genet, 2014, 46( 4): 326- 328. DOI: 10.1038/ng.2918.
|
| [14] |
CARIELLO M, PICCININ E, GARCIA-IRIGOYEN O, et al. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864( 4 Pt B): 1308- 1318. DOI: 10.1016/j.bbadis.2017.09.019.
|
| [15] |
VINAYAGAMOORTHY V, SRIVASTAVA A, SARMA MS. Newer variants of progressive familial intrahepatic cholestasis[J]. World J Hepatol, 2021, 13( 12): 2024- 2038. DOI: 10.4254/wjh.v13.i12.2024.
|
| [16] |
GOMEZ-OSPINA N, POTTER CJ, XIAO R, et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis[J]. Nat Commun, 2016, 7: 10713. DOI: 10.1038/ncomms10713.
|
| [17] |
KIM KH, CHOI JM, LI F, et al. Xenobiotic nuclear receptor signaling determines molecular pathogenesis of progressive familial intrahepatic cholestasis[J]. Endocrinology, 2018, 159( 6): 2435- 2446. DOI: 10.1210/en.2018-00110.
|
| [18] |
GAO E, CHEEMA H, WAHEED N, et al. Organic solute transporter alpha deficiency: A disorder with cholestasis, liver fibrosis, and congenital diarrhea[J]. Hepatology, 2020, 71( 5): 1879- 1882. DOI: 10.1002/hep.31087.
|
| [19] |
SULTAN M, RAO A, ELPELEG O, et al. Organic solute transporter-β(SLC51B) deficiency in two brothers with congenital diarrhea and features of cholestasis[J]. Hepatology, 2018, 68( 2): 590- 598. DOI: 10.1002/hep.29516.
|
| [20] |
KAZMIERCZAK M, HARRIS SL, KAZMIERCZAK P, et al. Progressive hearing loss in mice carrying a mutation in Usp53[J]. J Neurosci, 2015, 35( 47): 15582- 15598. DOI: 10.1523/JNEUROSCI.1965-15.2015.
|
| [21] |
ZHANG J, YANG Y, GONG JY, et al. Low-GGT intrahepatic cholestasis associated with biallelic USP53 variants: Clinical, histological and ultrastructural characterization[J]. Liver Int, 2020, 40( 5): 1142- 1150. DOI: 10.1111/liv.14422.
|
| [22] |
STALKE A, SGODDA M, CANTZ T, et al. KIF12 variants and disturbed hepatocyte polarity in children with a phenotypic spectrum of cholestatic liver disease[J]. J Pediatr, 2022, 240: 284- 291. e 9. DOI: 10.1016/j.jpeds.2021.09.019.
|
| [23] |
MADDIREVULA S, ALHEBBI H, ALQAHTANI A, et al. Identification of novel loci for pediatric cholestatic liver disease defined by KIF12, PPM1F, USP53, LSR, and WDR83OS pathogenic variants[J]. Genet Med, 2019, 21( 5): 1164- 1172. DOI: 10.1038/s41436-018-0288-x.
|
| [24] |
AÜ AKSU, DAS SK, NELSON-WILLIAMS C, et al. Recessive mutations in KIF12 cause high gamma-glutamyltransferase cholestasis[J]. Hepatol Commun, 2019, 3( 4): 471- 477. DOI: 10.1002/hep4.1320.
|
| [25] |
LUAN WS, HAO CZ, LI JQ, et al. Biallelic loss-of-function ZFYVE19 mutations are associated with congenital hepatic fibrosis, sclerosing cholangiopathy and high-GGT cholestasis[J]. J Med Genet, 2021, 58( 8): 514- 525. DOI: 10.1136/jmedgenet-2019-106706.
|
| [26] |
BULL LN, THOMPSON RJ. Progressive familial intrahepatic cholestasis[J]. Clin Liver Dis, 2018, 22( 4): 657- 669. DOI: 10.1016/j.cld.2018.06.003.
|
| [27] |
MANDATO C, SIANO MA, NAZZARO L, et al. A ZFYVE19 gene mutation associated with neonatal cholestasis and Cilia dysfunction: Case report with a novel pathogenic variant[J]. Orphanet J Rare Dis, 2021, 16( 1): 179. DOI: 10.1186/s13023-021-01775-8.
|
| [28] |
WANG L, QIU YL, XU HM, et al. MYO5B-associated diseases: Novel liver-related variants and genotype-phenotype correlation[J]. Liver Int, 2022, 42( 2): 402- 411. DOI: 10.1111/liv.15104.
|
| [29] |
QIU YL, GONG JY, FENG JY, et al. Defects in myosin VB are associated with a spectrum of previously undiagnosed low γ-glutamyltransferase cholestasis[J]. Hepatology, 2017, 65( 5): 1655- 1669. DOI: 10.1002/hep.29020.
|
| [30] |
COCKAR I, FOSKETT P, STRAUTNIEKS S, et al. Mutations in myosin 5B in children with early-onset cholestasis[J]. J Pediatr Gastroenterol Nutr, 2020, 71( 2): 184- 188. DOI: 10.1097/MPG.0000000000002740.
|
| [31] |
ALDRIAN D, VOGEL GF, FREY TK, et al. Congenital diarrhea and cholestatic liver disease: Phenotypic spectrum associated with MYO5B mutations[J]. J Clin Med, 2021, 10( 3): 481. DOI: 10.3390/jcm10030481.
|
| [32] |
PAN Q, LUO G, QU JQ, et al. A homozygous R148W mutation in Semaphorin 7A causes progressive familial intrahepatic cholestasis[J]. EMBO Mol Med, 2021, 13( 11): e14563. DOI: 10.15252/emmm.202114563.
|
| [33] |
KOH JM, OH B, LEE JY, et al. Association study of semaphorin 7a(sema7a) polymorphisms with bone mineral density and fracture risk in postmenopausal Korean women[J]. J Hum Genet, 2006, 51( 2): 112- 117. DOI: 10.1007/s10038-005-0331-z.
|
| [34] |
JIANG T, LUO HY, OUYANG WX, et al. Clinical features and genetic analysis of two children with arthrogryposis, renal insufficiency, and cholestasis syndrome[J]. J Clin Hepatol, 2022, 38( 2): 415- 417. DOI: 10.3969/j.issn.1001-5256.2022.02.029.
姜涛, 罗海燕, 欧阳文献, 等. 2例关节挛缩-肾功能不全-胆汁淤积综合征患儿的临床特征及遗传学分析[J]. 临床肝胆病杂志, 2022, 38( 2): 415- 417. DOI: 10.3969/j.issn.1001-5256.2022.02.029.
|
| [35] |
FU KL, WANG CH, GAO Y, et al. Metabolomics and lipidomics reveal the effect of hepatic Vps33b deficiency on bile acids and lipids metabolism[J]. Front Pharmacol, 2019, 10: 276. DOI: 10.3389/fphar.2019.00276.
|
| [36] |
QIU YL, LIU T, ABUDUXIKUER K, et al. Novel missense mutation in VPS33B is associated with isolated low gamma-glutamyltransferase cholestasis: Attenuated, incomplete phenotype of arthrogryposis, renal dysfunction, and cholestasis syndrome[J]. Hum Mutat, 2019, 40( 12): 2247- 2257. DOI: 10.1002/humu.23770.
|
| [37] |
JACQUEMIN E, HERMANS D, MYARA A, et al. Ursodeoxycholic acid therapy in pediatric patients with progressive familial intrahepatic cholestasis[J]. Hepatology, 1997, 25( 3): 519- 523. DOI: 10.1002/hep.510250303.
|
| [38] |
STAPELBROEK JM, van ERPECUM KJ, KLOMP LWJ, et al. Liver disease associated with canalicular transport defects: Current and future therapies[J]. J Hepatol, 2010, 52( 2): 258- 271. DOI: 10.1016/j.jhep.2009.11.012.
|
| [39] |
HENKEL SA, SQUIRES JH, AYERS M, et al. Expanding etiology of progressive familial intrahepatic cholestasis[J]. World J Hepatol, 2019, 11( 5): 450- 463. DOI: 10.4254/wjh.v11.i5.450.
|
| [40] |
AGARWAL S, LAL BB, RAWAT D, et al. Progressive familial intrahepatic cholestasis(PFIC) in Indian children: Clinical spectrum and outcome[J]. J Clin Exp Hepatol, 2016, 6( 3): 203- 208. DOI: 10.1016/j.jceh.2016.05.003.
|
| [41] |
FRIDER B, CASTILLO A, GORDO-GILART R, et al. Reversal of advanced fibrosis after long-term ursodeoxycholic acid therapy in a patient with residual expression of MDR3[J]. Ann Hepatol, 2015, 14( 5): 745- 751.
|
| [42] |
The Subspecialty Group of Infectious Diseases, the Society of Pediatrics, Chinese Medical Association; the Subspecialty Group of Gastroenterology, the Society of Pediatrics, Chinese Medical Association; the Editorial Board, Chinese Journal of Pediatrics. Expert consensus on diagnosis and treatment of infantile cholestasis[J]. Chin J Pediatr, 2022, 60( 10): 990- 997. DOI: 10.3760/cma.j.cn112140-20220505-00412.
中华医学会儿科学分会感染学组, 中华医学会儿科学分会消化学组, 中华儿科杂志编辑委员会. 婴儿胆汁淤积症诊断与治疗专家共识[J]. 中华儿科杂志, 2022, 60( 10): 990- 997. DOI: 10.3760/cma.j.cn112140-20220505-00412.
|
| [43] |
MINERS JO, CHAU N, ROWLAND A, et al. Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia[J]. Biochem Pharmacol, 2017, 129: 85- 95. DOI: 10.1016/j.bcp.2017.01.002.
|
| [44] |
PATEL SP, VASAVDA C, HO B, et al. Cholestatic pruritus: Emerging mechanisms and therapeutics[J]. J Am Acad Dermatol, 2019, 81( 6): 1371- 1378. DOI: 10.1016/j.jaad.2019.04.035.
|
| [45] |
HASEGAWA Y, HAYASHI H, NAOI S, et al. Intractable itch relieved by 4-phenylbutyrate therapy in patients with progressive familial intrahepatic cholestasis type 1[J]. Orphanet J Rare Dis, 2014, 9: 89. DOI: 10.1186/1750-1172-9-89.
|
| [46] |
VARMA S, REVENCU N, STEPHENNE X, et al. Retargeting of bile salt export pump and favorable outcome in children with progressive familial intrahepatic cholestasis type 2[J]. Hepatology, 2015, 62( 1): 198- 206. DOI: 10.1002/hep.27834.
|
| [47] |
HAYASHI H, NAOI S, HIROSE Y, et al. Successful treatment with 4-phenylbutyrate in a patient with benign recurrent intrahepatic cholestasis type 2 refractory to biliary drainage and bilirubin absorption[J]. Hepatol Res, 2016, 46( 2): 192- 200. DOI: 10.1111/hepr.12561.
|
| [48] |
ALMES M, JOBERT A, LAPALUS M, et al. Glycerol phenylbutyrate therapy in progressive familial intrahepatic cholestasis type 2[J]. J Pediatr Gastroenterol Nutr, 2020, 70( 6): e139- e140. DOI: 10.1097/MPG.0000000000002713.
|
| [49] |
TRAUNER M, NEVENS F, SHIFFMAN ML, et al. Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study[J]. Lancet Gastroenterol Hepatol, 2019, 4( 6): 445- 453. DOI: 10.1016/S2468-1253(19)30094-9.
|
| [50] |
CHEN HL, WU SH, HSU SH, et al. Jaundice revisited: Recent advances in the diagnosis and treatment of inherited cholestatic liver diseases[J]. J Biomed Sci, 2018, 25( 1): 75. DOI: 10.1186/s12929-018-0475-8.
|
| [51] |
MCKIERNAN P, BERNABEU JQ, GIRARD M, et al. Opinion paper on the diagnosis and treatment of progressive familial intrahepatic cholestasis[J]. JHEP Rep, 2023, 6( 1): 100949. DOI: 10.1016/j.jhepr.2023.100949.
|
| [52] |
BOLIA RS, GOEL AD, SHARMA V, et al. Biliary diversion in progressive familial intrahepatic cholestasis: A systematic review and meta-analysis[J]. Expert Rev Gastroenterol Hepatol, 2022, 16( 2): 163- 172. DOI: 10.1080/17474124.2022.2032660.
|
| [53] |
NIKEGHBALIAN S, MALEKHOSSEINI SA, KAZEMI K, et al. The largest single center report on pediatric liver transplantation: Experiences and lessons learned[J]. Ann Surg, 2021, 273( 2): e70- e72. DOI: 10.1097/SLA.0000000000004047.
|
| [54] |
KAVALLAR AM, MAYERHOFER C, ALDRIAN D, et al. Management and outcomes after liver transplantation for progressive familial intrahepatic cholestasis: A systematic review and meta-analysis[J]. Hepatol Commun, 2023, 7( 10): e0286. DOI: 10.1097/HC9.0000000000000286.
|
| [55] |
DEEKS ED. Odevixibat: First approval[J]. Drugs, 2021, 81( 15): 1781- 1786. DOI: 10.1007/s40265-021-01594-y.
|
| [56] |
GWALTNEY C, IVANESCU C, KARLSSON L, et al. Validation of the PRUCISION instruments in pediatric patients with progressive familial intrahepatic cholestasis[J]. Adv Ther, 2022, 39( 11): 5105- 5125. DOI: 10.1007/s12325-022-02262-7.
|
| [57] |
PORWAL M, KUMAR A, RASTOGI V, et al. Odevixibat: A review of a bioactive compound for the treatment of pruritus approved by the FDA[J]. Curr Drug Res Rev, 2023. DOI: 10.2174/2589977515666230308125238.
|
| [58] |
THOMPSON RJ, ARNELL H, ARTAN R, et al. Odevixibat treatment in progressive familial intrahepatic cholestasis: A randomised, placebo-controlled, phase 3 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7( 9): 830- 842. DOI: 10.1016/S2468-1253(22)00093-0.
|
| [59] |
ARONSON SJ, BAKKER RS, SHI XX, et al. Liver-directed gene therapy results in long-term correction of progressive familial intrahepatic cholestasis type 3 in mice[J]. J Hepatol, 2019, 71( 1): 153- 162. DOI: 10.1016/j.jhep.2019.03.021.
|