中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

程序性细胞死亡受体1与细胞毒性T淋巴细胞相关抗原4联合阻断治疗胰腺癌的研究进展

秦文科 魏孔源 赵学安 周文策 张辉

引用本文:
Citation:

程序性细胞死亡受体1与细胞毒性T淋巴细胞相关抗原4联合阻断治疗胰腺癌的研究进展

DOI: 10.12449/JCH251233
基金项目: 

国家自然科学基金 (82360510);

陇原青年创新创业人才(团队)项目 (212088725013);

兰州大学第二医院萃英科技创新计划项目 (CY2022-MS-A11)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:秦文科、赵学安负责综述框架设计,文献检索与筛选,主体内容撰写;魏孔源参与收集数据,修改论文;张辉、周文策负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    张辉, ery_huizhang@lzu.edu.cn (ORCID: 0009-0005-5854-1170)

Research advances in combined blockade therapy for programmed cell death-1 and cytotoxic T-lymphocyte-associated antigen 4 in pancreatic cancer

Research funding: 

National Natural Science Foundation of China (82360510);

Longyuan Young Innovation and Entrepreneurship Talent (Team) Program (212088725013);

Cuiying Scientific and Technological Innovation Program of the Second Hospital of Lanzhou University (CY2022-MS-A11)

More Information
  • 摘要: 胰腺癌(PC)是恶性程度极高、预后极差的消化道肿瘤,传统治疗手段对延长患者生存期的效果有限。近年来,免疫检查点抑制剂在多种实体瘤中取得突破性进展,其中程序性细胞死亡受体1与细胞毒性T淋巴细胞相关抗原4作为关键免疫检查点靶点备受关注。尽管二者在PC中的单独应用疗效不太理想,但双重阻断策略展现出更大的治疗潜力。本文从PC免疫微环境出发,系统综述程序性细胞死亡受体1与细胞毒性T淋巴细胞相关抗原4的生物学特性及其单药应用现状,重点探讨双重靶向治疗在PC中的研究进展及面临的挑战,并对未来发展方向进行展望。

     

  • 注: MHC-Ⅱ,主要组织相容性复合体Ⅱ类分子;PD-L1,程序性细胞死亡配体1;CD80/86,B7-1共刺激分子/B7-2共刺激分子;TCR,T细胞受体;PD-1,程序性细胞死亡受体1;CTLA-4,细胞毒性T淋巴细胞相关抗原4。

    图  1  PD-1/PD-L1 与 CTLA-4 介导的 T 细胞失活机制示意图

    Figure  1.  Schematic diagram of T-cell inactivation mediated by PD-1/PD-L1 and CTLA-4

  • [1] HALBROOK CJ, LYSSIOTIS CA, PASCA DI MAGLIANO M, et al. Pancreatic cancer: Advances and challenges[J]. Cell, 2023, 186( 8): 1729- 1754. DOI: 10.1016/j.cell.2023.02.014.
    [2] HU Z, O'REILLY EM. Therapeutic developments in pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol, 2024, 21( 1): 7- 24. DOI: 10.1038/s41575-023-00840-w.
    [3] KOLBEINSSON HM, CHANDANA S, WRIGHT GP, et al. Pancreatic cancer: A review of current treatment and novel therapies[J]. J Invest Surg, 2023, 36( 1): 2129884. DOI: 10.1080/08941939.2022.2129884.
    [4] CHENG WS, KANG K, ZHAO AL, et al. Dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in lung cancer[J]. J Hematol Oncol, 2024, 17( 1): 54. DOI: 10.1186/s13045-024-01581-2.
    [5] CHEN DS, MELLMAN I. Oncology meets immunology: The cancer-immunity cycle[J]. Immunity, 2013, 39( 1): 1- 10. DOI: 10.1016/j.immuni.2013.07.012.
    [6] VINAY DS, RYAN EP, PAWELEC G, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies[J]. Semin Cancer Biol, 2015, 35 Suppl: S185- S198. DOI: 10.1016/j.semcancer.2015.03.004.
    [7] BUCHBINDER EI, DESAI A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition[J]. Am J Clin Oncol, 2016, 39( 1): 98- 106. DOI: 10.1097/COC.0000000000000239.
    [8] TOPALIAN SL, DRAKE CG, PARDOLL DM. Immune checkpoint blockade: A common denominator approach to cancer therapy[J]. Cancer Cell, 2015, 27( 4): 450- 461. DOI: 10.1016/j.ccell.2015.03.001.
    [9] FARES CM, van ALLEN EM, DRAKE CG, et al. Mechanisms of resistance to immune checkpoint blockade: Why does checkpoint inhibitor immunotherapy not work for all patients?[J]. Am Soc Clin Oncol Educ Book, 2019, 39: 147- 164. DOI: 10.1200/EDBK_240837.
    [10] PASSARO A, BRAHMER J, ANTONIA S, et al. Managing resistance to immune checkpoint inhibitors in lung cancer: Treatment and novel strategies[J]. J Clin Oncol, 2022, 40( 6): 598- 610. DOI: 10.1200/JCO.21.01845.
    [11] WEI SC, LEVINE JH, COGDILL AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade[J]. Cell, 2017, 170( 6): 1120- 1133. e 17. DOI: 10.1016/j.cell.2017.07.024.
    [12] KVISTBORG P, PHILIPS D, KELDERMAN S, et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response[J]. Sci Transl Med, 2014, 6( 254): 254ra128. DOI: 10.1126/scitranslmed.3008918.
    [13] LEACH DR, KRUMMEL MF, ALLISON JP. Enhancement of antitumor immunity by CTLA-4 blockade[J]. Science, 1996, 271( 5256): 1734- 1736. DOI: 10.1126/science.271.5256.1734.
    [14] WONG RM, SCOTLAND RR, LAU RL, et al. Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs[J]. Int Immunol, 2007, 19( 10): 1223- 1234. DOI: 10.1093/intimm/dxm091.
    [15] WEI SC, ANANG NAS, SHARMA R, et al. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies[J]. Proc Natl Acad Sci USA, 2019, 116( 45): 22699- 22709. DOI: 10.1073/pnas.1821218116.
    [16] SUN T, ZHANG WJ, LI Y, et al. Combination immunotherapy with cytotoxic T-lymphocyte-associated antigen-4 and programmed death protein-1 inhibitors prevents postoperative breast tumor recurrence and metastasis[J]. Mol Cancer Ther, 2020, 19( 3): 802- 811. DOI: 10.1158/1535-7163.MCT-19-0495.
    [17] YEO J, KO M, LEE DH, et al. TIGIT/CD226 axis regulates anti-tumor immunity[J]. Pharmaceuticals, 2021, 14( 3): 200. DOI: 10.3390/ph14030200.
    [18] CURRAN MA, MONTALVO W, YAGITA H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors[J]. Proc Natl Acad Sci USA, 2010, 107( 9): 4275- 4280. DOI: 10.1073/pnas.0915174107.
    [19] PARDOLL DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012, 12( 4): 252- 264. DOI: 10.1038/nrc3239.
    [20] LI KY, TANDURELLA JA, GAI J, et al. Multi-omic analyses of changes in the tumor microenvironment of pancreatic adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy[J]. Cancer Cell, 2022, 40( 11): 1374- 1391. e 7. DOI: 10.1016/j.ccell.2022.10.001.
    [21] BRAHMER JR, DRAKE CG, WOLLNER I, et al. Phase I study of single-agent anti-programmed death-1(MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates[J]. J Clin Oncol, 2010, 28( 19): 3167- 3175. DOI: 10.1200/JCO.2009.26.7609.
    [22] LE DT, DURHAM JN, SMITH KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357( 6349): 409- 413. DOI: 10.1126/science.aan6733.
    [23] HOSSEN MM, MA YM, YIN ZH, et al. Current understanding of CTLA-4: From mechanism to autoimmune diseases[J]. Front Immunol, 2023, 14: 1198365. DOI: 10.3389/fimmu.2023.1198365.
    [24] LARKIN J, CHIARION-SILENI V, GONZALEZ R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma[J]. N Engl J Med, 2015, 373( 1): 23- 34. DOI: 10.1056/NEJMoa1504030.
    [25] NI R, HU ZM, TAO R. Advances of immune-checkpoint inhibition of CTLA-4 in pancreatic cancer[J]. Biomed Pharmacother, 2024, 179: 117430. DOI: 10.1016/j.biopha.2024.117430.
    [26] WOLCHOK JD, CHIARION-SILENI V, GONZALEZ R, et al. Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma[J]. J Clin Oncol, 2022, 40( 2): 127- 137. DOI: 10.1200/JCO.21.02229.
    [27] LARKIN J, CHIARION-SILENI V, GONZALEZ R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma[J]. N Engl J Med, 2019, 381( 16): 1535- 1546. DOI: 10.1056/NEJMoa1910836.
    [28] MOTZER RJ, TANNIR NM, MCDERMOTT DF, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma[J]. N Engl J Med, 2018, 378( 14): 1277- 1290. DOI: 10.1056/NEJMoa1712126.
    [29] MOTZER RJ, MCDERMOTT DF, ESCUDIER B, et al. Conditional survival and long-term efficacy with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma[J]. Cancer, 2022, 128( 11): 2085- 2097. DOI: 10.1002/cncr.34180.
    [30] OVERMAN MJ, MCDERMOTT R, LEACH JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer(CheckMate 142): An open-label, multicentre, phase 2 study[J]. Lancet Oncol, 2017, 18( 9): 1182- 1191. DOI: 10.1016/S1470-2045(17)30422-9.
    [31] OVERMAN MJ, LONARDI S, WONG KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer[J]. J Clin Oncol, 2018, 36( 8): 773- 779. DOI: 10.1200/JCO.2017.76.9901.
    [32] EL-KHOUEIRY AB, SANGRO B, YAU T, et al. Nivolumab in patients with advanced hepatocellular carcinoma(CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389( 10088): 2492- 2502. DOI: 10.1016/S0140-6736(17)31046-2.
    [33] BAAS P, SCHERPEREEL A, NOWAK AK, et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma(CheckMate 743): A multicentre, randomised, open-label, phase 3 trial[J]. Lancet, 2021, 397( 10272): 375- 386. DOI: 10.1016/S0140-6736(20)32714-8.
    [34] DOKI Y, AJANI JA, KATO K, et al. Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma[J]. N Engl J Med, 2022, 386( 5): 449- 462. DOI: 10.1056/NEJMoa2111380.
    [35] KELLEY RK, SANGRO B, HARRIS W, et al. Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: Randomized expansion of a phase I/II study[J]. J Clin Oncol, 2021, 39( 27): 2991- 3001. DOI: 10.1200/JCO.20.03555.
    [36] CALLAHAN M, AMIN A, KAYE FJ, et al. Nivolumab monotherapy or combination with ipilimumab with or without cobimetinib in previously treated patients with pancreatic adenocarcinoma(CheckMate 032)[J]. J Immunother Cancer, 2024, 12( 2): e007883. DOI: 10.1136/jitc-2023-007883.
    [37] O'REILLY EM, OH DY, DHANI N, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: A phase 2 randomized clinical trial[J]. JAMA Oncol, 2019, 5( 10): 1431- 1438. DOI: 10.1001/jamaoncol.2019.1588.
    [38] RENOUF DJ, LOREE JM, KNOX JJ, et al. The CCTG PA.7 phase II trial of gemcitabine and nab-paclitaxel with or without durvalumab and tremelimumab as initial therapy in metastatic pancreatic ductal adenocarcinoma[J]. Nat Commun, 2022, 13( 1): 5020. DOI: 10.1038/s41467-022-32591-8.
    [39] LONG B, ZHOU HN, YU ZY, et al. Neoadjuvant cadonilimab plus FLOT chemotherapy in locally advanced gastric/gastroesophageal junction adenocarcinoma: A multicenter, phase 2 study[J]. Med, 2025, 6( 3): 100531. DOI: 10.1016/j.medj.2024.10.008.
    [40] SHEN L, ZHANG YQ, LI ZY, et al. First-line cadonilimab plus chemotherapy in HER2-negative advanced gastric or gastroesophageal junction adenocarcinoma: A randomized, double-blind, phase 3 trial[J]. Nat Med, 2025, 31( 4): 1163- 1170. DOI: 10.1038/s41591-024-03450-4.
    [41] MUNN DH, MELLOR AL. IDO in the tumor microenvironment: Inflammation, counter-regulation, and tolerance[J]. Trends Immunol, 2016, 37( 3): 193- 207. DOI: 10.1016/j.it.2016.01.002.
    [42] HE X, HE GC, CHU ZX, et al. Discovery of the first potent IDO1/IDO2 dual inhibitors: A promising strategy for cancer immunotherapy[J]. J Med Chem, 2021, 64( 24): 17950- 17968. DOI: 10.1021/acs.jmedchem.1c01305.
    [43] LI TL, XU D, RUAN Z, et al. Metabolism/immunity dual-regulation thermogels potentiating immunotherapy of glioblastoma through lactate-excretion inhibition and PD-1/PD-L1 blockade[J]. Adv Sci, 2024, 11( 18): 2310163. DOI: 10.1002/advs.202310163.
    [44] LIANG H, ZHAN JN, CHEN YQ, et al. Tryptophan deficiency induced by indoleamine 2, 3-dioxygenase 1 results in glucose transporter 1-dependent promotion of aerobic glycolysis in pancreatic cancer[J]. MedComm, 2024, 5( 5): e555. DOI: 10.1002/mco2.555.
    [45] LONG GV, DUMMER R, HAMID O, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma(ECHO-301/KEYNOTE-252): A phase 3, randomised, double-blind study[J]. Lancet Oncol, 2019, 20( 8): 1083- 1097. DOI: 10.1016/S1470-2045(19)30274-8.
    [46] HELLMANN MD, PAZ-ARES L, BERNABE CARO R, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer[J]. N Engl J Med, 2019, 381( 21): 2020- 2031. DOI: 10.1056/NEJMoa1910231.
    [47] PAZ-ARES L, CIULEANU TE, COBO M, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer(CheckMate 9LA): An international, randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2021, 22( 2): 198- 211. DOI: 10.1016/S1470-2045(20)30641-0.
    [48] GAO XY, XU N, LI ZY, et al. Safety and antitumour activity of cadonilimab, an anti-PD-1/CTLA-4 bispecific antibody, for patients with advanced solid tumours(COMPASSION-03): A multicentre, open-label, phase 1b/2 trial[J]. Lancet Oncol, 2023, 24( 10): 1134- 1146. DOI: 10.1016/S1470-2045(23)00411-4.
  • 加载中
图(1)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  2
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-06
  • 录用日期:  2025-06-25
  • 出版日期:  2025-12-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回