肝内胆管癌诊断与预后预测模型的应用价值
DOI: 10.12449/JCH251229
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:刘一朝负责设计论文框架,起草论文;郝晋雍负责论文思路及修改;雷霞负责论文修改;包含舟负责文献整理;杨继华、王俏负责文献筛选;黄晓俊负责指导撰写文章并最后定稿。
Application value of predictive models for the diagnosis and prognosis of intrahepatic cholangiocarcinoma
-
摘要: 肝内胆管癌(iCCA)具有起病隐匿、侵袭性强和预后不良等特点,其临床诊疗面临严峻挑战。优化该疾病的治疗策略并实施个体化诊疗是目前临床亟待解决的关键问题。临床预测模型通过量化评估患者的预后风险与潜在治疗获益,为临床决策提供客观依据,在iCCA诊疗领域的应用价值日益凸显。本文系统综述了近年来iCCA诊断与预后预测模型在不同方面的研究进展及其临床应用价值,以期提升模型的临床转化价值,为制订个体化诊疗方案提供支持。Abstract: Intrahepatic cholangiocarcinoma (iCCA) is characterized by an insidious onset, strong invasiveness, and a poor prognosis, and there are great challenges in the clinical diagnosis and treatment of iCCA. It is urgently needed in clinical practice to optimize the treatment strategies for this disease and implement individualized diagnosis and treatment. By quantifying the prognostic risks and potential treatment benefits of patients, clinical predictive models can provide objective evidence for clinical decision-making, showing an increasingly important application value in the diagnosis and treatment of iCCA. This article systematically reviews the recent research advances in the predictive models for the diagnosis and treatment of iCCA and their clinical application value, in order to enhance the clinical translational value of these models and provide support for developing individualized treatment regimens.
-
Key words:
- Cholangiocarcinoma /
- Diagnosis /
- Prognosis /
- Models, Stoatistical
-
[1] QURASHI M, VITHAYATHIL M, KHAN SA. Epidemiology of cholangiocarcinoma[J]. Eur J Surg Oncol, 2025, 51( 2): 107064. DOI: 10.1016/j.ejso.2023.107064. [2] MORIS D, PALTA M, KIM C, et al. Advances in the treatment of intrahepatic cholangiocarcinoma: An overview of the current and future therapeutic landscape for clinicians[J]. CA Cancer J Clin, 2023, 73( 2): 198- 222. DOI: 10.3322/caac.21759. [3] HEWITT DB, BROWN ZJ, PAWLIK TM. Surgical management of intrahepatic cholangiocarcinoma[J]. Expert Rev Anticancer Ther, 2022, 22( 1): 27- 38. DOI: 10.1080/14737140.2022.1999809. [4] GU HQ. Challenges and opportunities in clinical prediction models[J]. Chin J Stroke, 2024, 19( 5): 481- 487. DOI: 10.3969/j.issn.1673-5765.2024.05.001.谷鸿秋. 临床预测模型的困境与机遇[J]. 中国卒中杂志, 2024, 19( 5): 481- 487. DOI: 10.3969/j.issn.1673-5765.2024.05.001. [5] BRUNESE MC, FANTOZZI MR, FUSCO R, et al. Update on the applications of radiomics in diagnosis, staging, and recurrence of intrahepatic cholangiocarcinoma[J]. Diagnostics, 2023, 13( 8): 1488. DOI: 10.3390/diagnostics13081488. [6] National Health Commission of the People’s Republic of China. Standard for diagnosis and treatment of primary liver cancer(2024 edition)[J]. J Clin Hepatol, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508.中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2024年版)[J]. 临床肝胆病杂志, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508. [7] HE JX, XIE XW, CHEN JY. Value of MRI imaging features in differential diagnosis of atypical hepatocellular carcinoma and lumpy intrahepatic cholangiocarcinoma[J]. J Imag Res Med Appl, 2024, 8( 23): 108- 110. DOI: 10.3969/j.issn.2096-3807.2024.23.034.何俊兴, 谢显文, 陈景艺. MRI影像特征对不典型肝细胞癌与肿块型肝内胆管癌的鉴别诊断价值[J]. 影像研究与医学应用, 2024, 8( 23): 108- 110. DOI: 10.3969/j.issn.2096-3807.2024.23.034. [8] XU XL, MAO YF, TANG YQ, et al. Classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on radiomic analysis[J]. Comput Math Methods Med, 2022, 2022: 5334095. DOI: 10.1155/2022/5334095. [9] YANG CH, MA PF, LIANG ZW, et al. Differential diagnosis model of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on serological indexes[J]. Henan J Surg, 2024, 30( 4): 7- 12. DOI: 10.16193/j.cnki.hnwk.2024.04.064.杨超豪, 马鹏飞, 梁志伟, 等. 基于血清学指标构建肝细胞癌与肝内胆管癌的鉴别诊断模型[J]. 河南外科学杂志, 2024, 30( 4): 7- 12. DOI: 10.16193/j.cnki.hnwk.2024.04.064. [10] LIU CR, XUE HY, LIU H, et al. Development and evaluation of a clinical and ultrasound features-based nomogram for the preoperative diagnosis of intrahepatic cholangiocarcinoma[J]. Chin J Hepatobiliary Surg, 2024, 30( 5): 354- 359. DOI: 10.3760/cma.j.cn113884-20231205-00155.刘春蕊, 薛海燕, 刘晗, 等. 基于临床和超声特征的术前诊断肝内胆管癌列线图的构建与评估[J]. 中华肝胆外科杂志, 2024, 30( 5): 354- 359. DOI: 10.3760/cma.j.cn113884-20231205-00155. [11] CAO JZ, REN YX, CHEN K, et al. Application of deep learning based on multimodal ultrasound images in differential diagnosis of ICC and HCC[J]. Med J West China, 2023, 35( 6): 916- 922. DOI: 10.3969/j.issn.1672-3511.2023.06.025.曹佳智, 任佑祥, 陈科, 等. 基于多模态超声图像的深度学习在鉴别诊断肝内胆管细胞癌与肝细胞癌中的应用[J]. 西部医学, 2023, 35( 6): 916- 922. DOI: 10.3969/j.issn.1672-3511.2023.06.025. [12] ZHANG SY, ZHANG S, WU JN, et al. Application of MRI imaging omics to distinguish carcinoma in situ of liver and intrahepatic cholangiocarcinoma[J]. World J Complex Med, 2023, 9( 2): 14- 18. DOI: 10.11966/j.issn.2095-994X.2023.09.02.04.张苏雅, 张帅, 吴佳妮, 等. MRI影像组学鉴别肝原位癌和肝内胆管细胞癌的应用研究[J]. 世界复合医学, 2023, 9( 2): 14- 18. DOI: 10.11966/j.issn.2095-994X.2023.09.02.04. [13] WANG T, WANG WX, ZHANG JF, et al. Development and validation of a nomogram for differentiating combined hepatocellular cholangiocarcinoma from intrahepatic cholangiocarcinoma[J]. Front Oncol, 2020, 10: 598433. DOI: 10.3389/fonc.2020.598433. [14] CHEN YL, LU Q, ZHANG WB, et al. Preoperative differentiation of combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma and intrahepatic cholangiocarcinoma: A nomogram based on ultrasonographic features and clinical indicators[J]. Front Oncol, 2022, 12: 757774. DOI: 10.3389/fonc.2022.757774. [15] LI H, SUN XF, WANG Q, et al. Contrast-enhanced ultrasound combined with mathematical pattern identify intrahepatic cholangiocarcinoma and prophase of bacterial hepatic abscess[J]. Chin J Ultrason, 2020, 29( 5): 405- 410. DOI: 10.3760/cma.j.cn131148-20190910-00555.李惠, 孙晓芳, 王绮, 等. 超声造影检查结合数学模型鉴别肝内胆管癌与肝脓肿形成前期[J]. 中华超声影像学杂志, 2020, 29( 5): 405- 410. DOI: 10.3760/cma.j.cn131148-20190910-00555. [16] SONG GH, SHI Y, MENG L, et al. Single-cell transcriptomic analysis suggests two molecularly distinct subtypes of intrahepatic cholangiocarcinoma[J]. Nat Commun, 2022, 13: 1642. DOI: 10.1038/s41467-022-29164-0. [17] CHEN LX, HUANG DD, WU YP, et al. CT-based extracellular volume fraction combining with CT features for the preoperative pathological categorization of intrahepatic cholangiocarcinoma[J]. Med J West China, 2024, 36( 5): 771- 775. DOI: 10.3969/j.issn.1672-3511.2024.05.027.陈良潇, 黄豆豆, 吴玉平, 等. 细胞外容积分数联合CT特征对肝内胆管癌分型的预测价值[J]. 西部医学, 2024, 36( 5): 771- 775. DOI: 10.3969/j.issn.1672-3511.2024.05.027. [18] XIAO YY, ZHOU CW, NI XY, et al. Preoperative subcategorization based on magnetic resonance imaging in intrahepatic cholangiocarcinoma[J]. Cancer Imaging, 2023, 23( 1): 15. DOI: 10.1186/s40644-023-00533-2. [19] LI Q, ZHANG J, CHEN C, et al. A nomogram model to predict early recurrence of patients with intrahepatic cholangiocarcinoma for adjuvant chemotherapy guidance: A multi-institutional analysis[J]. Front Oncol, 2022, 12: 896764. DOI: 10.3389/fonc.2022.896764. [20] CHEN YF, LIU HZ, ZHANG JY, et al. Prognostic value and predication model of microvascular invasion in patients with intrahepatic cholangiocarcinoma: A multicenter study from China[J]. BMC Cancer, 2021, 21( 1): 1299. DOI: 10.1186/s12885-021-09035-5. [21] QIAN XL, LU X, MA XJ, et al. A multi-parametric radiomics nomogram for preoperative prediction of microvascular invasion status in intrahepatic cholangiocarcinoma[J]. Front Oncol, 2022, 12: 838701. DOI: 10.3389/fonc.2022.838701. [22] ZHOU ZY, CAO SY, ZHAO CL, et al. Contrast-enhanced computed tomography radiomics for the preoperative prediction model of microvascular invasion in intrahepatic cholangiocarcinoma[J]. Int J Surg, 2024, 51( 8): 511- 516. DOI: 10.3760/cma.j.cn115396-20240701-00205.周喆聿, 操舒亚, 赵春龙, 等. 增强CT影像组学用于肝内胆管癌微血管侵犯的术前预测模型[J]. 国际外科学杂志, 2024, 51( 8): 511- 516. DOI: 10.3760/cma.j.cn115396-20240701-00205. [23] WEI T, ZHANG XF, HE J, et al. Prognostic impact of perineural invasion in intrahepatic cholangiocarcinoma: Multicentre study[J]. Br J Surg, 2022, 109( 7): 610- 616. DOI: 10.1093/bjs/znac098. [24] WANG MB, SUN ZW, WANG QL, et al. Establishment and validation of a nomogram model for preoperative prediction of the risk of cholangiocarcinoma with perineural invasion[J]. Am J Cancer Res, 2023, 13( 11): 5082- 5093. [25] LI Q, ZHANG J, SU JB, et al. Impact of number and location of metastatic lymph nodes on prognosis in patients after resection for intrahepatic cholangiocarcinoma[J]. Chin J Hepatobiliary Surg, 2022, 28( 2): 85- 90. DOI: 10.3760/cma.j.cn113884-20211021-00343.李起, 张健, 苏敬博, 等. 淋巴结转移数目及位置对肝内胆管癌根治术预后的影响[J]. 中华肝胆外科杂志, 2022, 28( 2): 85- 90. DOI: 10.3760/cma.j.cn113884-20211021-00343. [26] LI FY, JIANG Y, JIANG LY, et al. Effect of lymph node resection on prognosis of resectable intrahepatic cholangiocarcinoma: A systematic review and meta-analysis[J]. Front Oncol, 2022, 12: 957792. DOI: 10.3389/fonc.2022.957792. [27] NAVARRO JG, LEE JH, KANG I, et al. Prognostic significance of and risk prediction model for lymph node metastasis in resectable intrahepatic cholangiocarcinoma: Do all require lymph node dissection?[J]. HPB, 2020, 22( 10): 1411- 1419. DOI: 10.1016/j.hpb.2020.01.009. [28] HUANG TF, LIU HZ, LIN ZW, et al. Preoperative prediction of intrahepatic cholangiocarcinoma lymph node metastasis by means of machine learning: A multicenter study in China[J]. BMC Cancer, 2022, 22( 1): 931. DOI: 10.1186/s12885-022-10025-4. [29] PENG YT, PANG JS, LIN P, et al. Preoperative prediction of lymph node metastasis in intrahepatic cholangiocarcinoma: An integrative approach combining ultrasound-based radiomics and inflammation-related markers[J]. BMC Med Imaging, 2025, 25( 1): 4. DOI: 10.1186/s12880-024-01542-8. [30] YAN X, WANG P, ZHU ZF, et al. Site-specific metastases of intrahepatic cholangiocarcinoma and its impact on survival: A population-based study[J]. Future Oncol, 2019, 15( 18): 2125- 2137. DOI: 10.2217/fon-2018-0846. [31] FANG CX, XU C, JIA XD, et al. Development and validation of a clinical prediction model for the risk of distal metastasis in intrahepatic cholangiocarcinoma: A real-world study[J]. BMC Gastroenterol, 2024, 24( 1): 1. DOI: 10.1186/s12876-023-03084-9. [32] ZHU SF, MAO BL, ZHUANG RY, et al. Development and validation of a diagnostic and prognostic model for bone metastasis of intrahepatic cholangiocarcinoma: A population-based analysis[J]. Transl Cancer Res, 2024, 13( 8): 4010- 4027. DOI: 10.21037/tcr-24-567. [33] LI XM, XING LH, ZHUO LY, et al. Development and validation of a model for predicting pathological grade of intrahepatic mass-forming cholangiocarcinoma based on intratumoral and peritumoral features on MRI[J]. Chin J Magn Reson Imag, 2025, 16( 2): 51- 58. DOI: 10.12015/issn.1674-8034.2025.02.008.李晓萌, 邢立红, 卓利勇, 等. 基于MRI瘤内及瘤周特征预测肝内肿块型胆管癌病理分级模型的开发和验证[J]. 磁共振成像, 2025, 16( 2): 51- 58. DOI: 10.12015/issn.1674-8034.2025.02.008. [34] SERIFIS N, TSILIMIGRAS DI, CLOONAN DJ, et al. Challenges and opportunities for treating intrahepatic cholangiocarcinoma[J]. Hepatic Med Evid Res, 2021, 13: 93- 104. DOI: 10.2147/HMER.S278136. [35] ZHAO CY, LI XY, LUO L, et al. Modified staging system of positive lymph nodes based nomogram in intrahepatic cholangiocarcinoma[J]. Cancer Cell Int, 2023, 23( 1): 148. DOI: 10.1186/s12935-023-03005-6. [36] LI XC, HUANG B, CHANG J. Current status and progress of immunotherapy and targeted therapy for advanced biliary tract cancers[J]. Chin J Dig Surg, 2025, 24( 7): 832- 839. DOI: 10.3760/cma.j.cn115610-20250509-00184.李相成, 黄彬, 长江. 晚期胆道恶性肿瘤免疫与靶向治疗的现状与进展[J]. 中华消化外科杂志, 2025, 24( 7): 832- 839. DOI: 10.3760/cma.j.cn115610-20250509-00184. [37] LIN ZW, LIU HZ, ZENG YY, et al. Hotspots and advances in neoadjuvant therapy for intrahepatic cholangiocarcinoma[J]. J Clin Hepatol, 2023, 39( 9): 2031- 2038. DOI: 10.3969/j.issn.1001-5256.2023.09.002.林志文, 刘红枝, 曾永毅, 等. 肝内胆管癌新辅助治疗的热点与进展[J]. 临床肝胆病杂志, 2023, 39( 9): 2031- 2038. DOI: 10.3969/j.issn.1001-5256.2023.09.002. [38] WANG YH, LI JT. Advances in treatment decision-making for extrahepatic recurrence of intrahepatic cholangiocarcinoma[J]. J Clin Hepatol, 2024, 40( 12): 2361- 2365. DOI: 10.12449/JCH241204.王一航, 李江涛. 肝外复发性肝内胆管癌治疗决策进展[J]. 临床肝胆病杂志, 2024, 40( 12): 2361- 2365. DOI: 10.12449/JCH241204. [39] ALAIMO L, LIMA HA, MOAZZAM Z, et al. Development and validation of a machine-learning model to predict early recurrence of intrahepatic cholangiocarcinoma[J]. Ann Surg Oncol, 2023, 30( 9): 5406- 5415. DOI: 10.1245/s10434-023-13636-8. [40] HAO XH, LIU B, HU XF, et al. A radiomics-based approach for predicting early recurrence in intrahepatic cholangiocarcinoma after surgical resection: A multicenter study[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 3659- 3662. DOI: 10.1109/EMBC46164.2021.9630029. [41] European Association for the Study of the Liver. EASL-ILCA clinical practice guidelines on the management of intrahepatic cholangiocarcinoma[J]. J Hepatol, 2023, 79( 1): 181- 208. DOI: 10.1016/j.jhep.2023.03.010. [42] ZHANG HF, LI QS, HUANG G, et al. Construction and evaluation of a nomogram prediction model for survival after radical surgical resection of intrahepatic cholangiocarcinoma based on the albumin-bilirubin index[J]. Chin J Hepatobiliary Surg, 2023, 29( 6): 428- 433. DOI: 10.3760/cma.j.cn113884-20221201-00445.张号枫, 李青山, 黄冠, 等. 基于白蛋白-胆红素指数的预测肝内胆管细胞癌根治性切除术后生存率的列线图模型构建[J]. 中华肝胆外科杂志, 2023, 29( 6): 428- 433. DOI: 10.3760/cma.j.cn113884-20221201-00445. [43] SU JB, ZHANG JW, CHEN C, et al. Impact of adjuvant chemotherapy on prognosis in intrahepatic cholangiocarcinoma patients underwent radical resection[J]. Chin J Surg, 2022, 60( 4): 356- 362. DOI: 10.3760/cma.j.cn112139-20220110-00021.苏敬博, 张景玮, 陈晨, 等. 辅助化疗对肝内胆管癌根治性切除术后患者预后的影响[J]. 中华外科杂志, 2022, 60( 4): 356- 362. DOI: 10.3760/cma.j.cn112139-20220110-00021. [44] ZHOU SN, LU SS, JU DW, et al. A new prognostic model covering all stages of intrahepatic cholangiocarcinoma[J]. J Clin Transl Hepatol, 2022, 10( 2): 254- 262. DOI: 10.14218/JCTH.2021.00099. [45] CHU HP, LIU ZL, LIANG W, et al. Radiomics using CT images for preoperative prediction of futile resection in intrahepatic cholangiocarcinoma[J]. Eur Radiol, 2021, 31( 4): 2368- 2376. DOI: 10.1007/s00330-020-07250-5. [46] RATTI F, MARINO R, OLTHOF PB, et al. Predicting futility of upfront surgery in perihilar cholangiocarcinoma: Machine learning analytics model to optimize treatment allocation[J]. Hepatology, 2024, 79( 2): 341- 354. DOI: 10.1097/HEP.0000000000000554. [47] ALTAF A, ENDO Y, GUGLIELMI A, et al. Upfront surgery for intrahepatic cholangiocarcinoma: Prediction of futility using artificial intelligence[J]. Surgery, 2025, 179: 108809. DOI: 10.1016/j.surg.2024.06.059. [48] SUN YT, LIU BX, SHEN H, et al. Cox model risk score to predict survival of intrahepatic cholangiocarcinoma after ultrasound-guided ablation[J]. Abdom Radiol, 2024, 49( 5): 1653- 1663. DOI: 10.1007/s00261-024-04192-0. [49] ZENG Q, WANG X, LIU J, et al. Application of machine learning models to explore prognosis and cause of death in advanced intrahepatic cholangiocarcinoma patients undergoing chemotherapy[J]. Discov Oncol, 2025, 16( 1): 490. DOI: 10.1007/s12672-025-02274-z. [50] HAGHBIN H, AZIZ M. Artificial intelligence and cholangiocarcinoma: Updates and prospects[J]. World J Clin Oncol, 2022, 13( 2): 125- 134. DOI: 10.5306/wjco.v13.i2.125. -
本文二维码
计量
- 文章访问数: 4
- HTML全文浏览量: 1
- PDF下载量: 4
- 被引次数: 0

PDF下载 ( 717 KB)
下载:
