中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环磷酸鸟苷-腺苷合成酶-干扰素基因刺激因子(cGAS-STING)信号通路激活对γδT细胞杀伤肝癌细胞效应的调控作用

胡帅 王二强 多小勇 徐志 张玉梦 谢士伟 荣利华 王宇晨 李江 张示杰

引用本文:
Citation:

环磷酸鸟苷-腺苷合成酶-干扰素基因刺激因子(cGAS-STING)信号通路激活对γδT细胞杀伤肝癌细胞效应的调控作用

DOI: 10.12449/JCH251219
基金项目: 

国家卫生健康委中亚高发病防治重点实验室开放基金项目 (KF202203);

兵团指导性科技计划项目 (2023ZD023);

院级科技计划项目 (BS202203)

伦理学声明:本研究于2023年4月18日经由石河子大学第一附属医院科技伦理委员会审批,批号:KJ2023-163-01。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:胡帅负责撰写论文;王二强负责部分课题设计、实验指导;多小勇、徐志、张玉梦负责数据分析,论文修改;谢士伟、荣利华、王宇晨负责图表数据的可视化处理与优化;李江、张示杰负责课题设计,指导撰写文章并最后定稿。
详细信息
    通信作者:

    李江, jiangli08@163.com (ORCID: 0000-0003-0120-9239)

    张示杰, zhangshijie1@sina.com (ORCID: 0000-0002-2416-2421)

Activation of the cyclic guanosine monophosphate-adenosine monophosphate adenosine synthetase-stimulator of interferon genes signaling pathway regulates the cytotoxicity of γδT cells against hepatoma cells

Research funding: 

Open Research Fund of the Key Laboratory of Prevention and Treatment of High Incidence of Central Asia,NHC (National Health Commission) (KF202203);

Guided Science and Technology Plan Project of XPCC (Xinjiang Production and Construction Corps) (2023ZD023);

Hospital-Level Science and Technology Plan Project (BS202203)

More Information
  • 摘要:   目的  通过体外实验,探究环磷酸鸟苷-腺苷合成酶-干扰素基因刺激因子(cGAS-STING)信号通路对γδT细胞杀伤肝细胞癌效应的调控作用,为提升基于γδT细胞的过继免疫疗法效果提供新思路。  方法  分离外周血单个核细胞并扩增γδT细胞,随后检测其纯度;将成熟的γδT细胞分为γδT组、γδT-G10组和γδT-H-151组,体外刺激24 h后,利用Western Blot检测cGAS-STING信号通路关键蛋白的表达水平;通过酶联免疫吸附试验检测干扰素-γ(IFN-γ)及肿瘤坏死因子-α(TNF-α)浓度;将各组细胞分别与肝癌细胞MHCC-97H、Huh-7共培养6 h,利用细胞计数试剂盒-8技术检测各组肝癌细胞的存活率。计量资料多组间比较采用单因素方差分析,进一步两两比较采用Dunnett’s T3多重比较检验和Tukey多重比较检验。  结果  流式细胞术结果显示,γδT细胞纯度达99%以上;Western Blot结果表明,与γδT组相比,γδT-G10组和γδT-H-151组细胞中cGAS表达无显著差异,γδT-G10组中STING、磷酸化STING(P-STING)、TANK结合激酶1、磷酸化TANK 结合激酶 1、干扰素调节因子3及磷酸化干扰素调节因子3的表达上调,而γδT-H-151组中上述蛋白表达均下调;酶联免疫吸附试验结果显示,与γδT组相比,γδT-G10组γδT细胞分泌的IFN-γ、TNF-α显著增加(P值分别为<0.01、<0.05),而γδT-H-151组γδT细胞分泌的IFN-γ、TNF-α显著减少(P值分别为<0.01、0.000 1);细胞计数试剂盒-8检测结果显示,与γδT组相比,γδT-G10组MHCC-9H和Huh7细胞株肝癌细胞的存活率显著下降(P值均<0.000 1),γδT-H-151组则显著上升(P值均<0.000 1)。  结论  cGAS-STING信号通路可在体外调控γδT细胞对肝细胞癌的杀伤效应。

     

  • 注: a,从外周血分离出的PBMC中γδT细胞占比;b,培养7 d后PBMC中γδT细胞占比。

    图  1  γδT细胞纯度检测结果

    Figure  1.  Purity detection of gamma delta T cells

    注: a,不同浓度的G10及H-151刺激的γδT细胞光学显微镜图像(×100);b,不同浓度的G10及H-151刺激的γδT细胞团直径;c,不同浓度的G10及H-151刺激的直径>70 μm的γδT细胞团数量。

    图  2  激动剂及抑制剂对γδT细胞生长的影响

    Figure  2.  Effects of agonists and inhibitors on the growth of gamma delta T cells

    图  3  cGAS-STING信号通路关键蛋白的Western Blot结果

    Figure  3.  Western Blot results of key proteins in the cGAS-STING signaling pathway

    注: a,不同刺激的γδT细胞对MHCC-97H细胞株的杀伤结果;b,不同刺激的γδT细胞对Huh-7细胞株的杀伤结果。*P<0.000 1。

    图  4  不同刺激的γδT细胞对不同肝癌细胞株的杀伤结果

    Figure  4.  The killing effect of different stimuli of gamma delta T cells on different HCC cell lines

    注: a,γδT细胞分泌IFN-γ结果;b,γδT细胞分泌TNF-α结果。

    图  5  γδT细胞分泌IFN-γ及TNF-α结果

    Figure  5.  Results of IFN-γ and TNF-α secretion by gamma delta T cells

  • [1] BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74( 3): 229- 263. DOI: 10.3322/caac.21834.
    [2] HAN BF, ZHENG RS, ZENG HM, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4( 1): 47- 53. DOI: 10.1016/j.jncc.2024.01.006.
    [3] DU BY, YU RH, GENG XQ, et al. The function of MSP-activated γδT cells in hepatocellular carcinoma[J]. Int Immunopharmacol, 2023, 124( Pt A): 110893. DOI: 10.1016/j.intimp.2023.110893.
    [4] AMAJALA KC, GUDIVADA IP, MALLA RR. Gamma delta T cells: Role in immunotherapy of hepatocellular carcinoma[J]. Crit Rev Oncog, 2023, 28( 4): 41- 50. DOI: 10.1615/critrevoncog.2023049893.
    [5] XI XY, GUO Y, ZHU M, et al. Identification of new potential antigen recognized by γδT cells in hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2021, 70( 7): 1917- 1927. DOI: 10.1007/s00262-020-02826-y.
    [6] BENMEBAREK MR, KARCHES CH, CADILHA BL, et al. Killing mechanisms of chimeric antigen receptor(CAR) T cells[J]. Int J Mol Sci, 2019, 20( 6): 1283. DOI: 10.3390/ijms20061283.
    [7] OU L, ZHANG A, CHENG YX, et al. The cGAS-STING pathway: A promising immunotherapy target[J]. Front Immunol, 2021, 12: 795048. DOI: 10.3389/fimmu.2021.795048.
    [8] LI T, CHEN ZJ. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer[J]. J Exp Med, 2018, 215( 5): 1287- 1299. DOI: 10.1084/jem.20180139.
    [9] AN X, ZHU YY, ZHENG TS, et al. An analysis of the expression and association with immune cell infiltration of the cGAS/STING pathway in pan-cancer[J]. Mol Ther Nucleic Acids, 2019, 14: 80- 89. DOI: 10.1016/j.omtn.2018.11.003.
    [10] SUGAWARA Y, HIBI T. Surgical treatment of hepatocellular carcinoma[J]. Biosci Trends, 2021, 15( 3): 138- 141. DOI: 10.5582/bst.2021.01094.
    [11] LIU DM, SONG TQ. Changes in and challenges regarding the surgical treatment of hepatocellular carcinoma in China[J]. Biosci Trends, 2021, 15( 3): 142- 147. DOI: 10.5582/bst.2021.01083.
    [12] LI R, JOHNSON R, YU GL, et al. Preservation of cell-based immunotherapies for clinical trials[J]. Cytotherapy, 2019, 21( 9): 943- 957. DOI: 10.1016/j.jcyt.2019.07.004.
    [13] ALNAGGAR M, XU Y, LI JX, et al. Allogenic Vγ9Vδ2 T cell as new potential immunotherapy drug for solid tumor: A case study for cholangiocarcinoma[J]. J Immunother Cancer, 2019, 7( 1): 36. DOI: 10.1186/s40425-019-0501-8.
    [14] XU Y, XIANG Z, ALNAGGAR M, et al. Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer[J]. Cell Mol Immunol, 2021, 18( 2): 427- 439. DOI: 10.1038/s41423-020-0515-7.
    [15] WANG XY, ZHANG HB, WANG YQ, et al. DNA sensing via the cGAS/STING pathway activates the immunoproteasome and adaptive T-cell immunity[J]. EMBO J, 2023, 42( 8): e110597. DOI: 10.15252/embj.2022110597.
    [16] MOTEDAYEN AVAL L, PEASE JE, SHARMA R, et al. Challenges and opportunities in the clinical development of STING agonists for cancer immunotherapy[J]. J Clin Med, 2020, 9( 10): 3323. DOI: 10.3390/jcm9103323.
    [17] NAKAMURA T, SATO T, ENDO R, et al. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation[J]. J Immunother Cancer, 2021, 9( 7): e0028‑ 52. DOI: 10.1136/jitc-2021-002852.
    [18] KONDO M, IZUMI T, FUJIEDA N, et al. Expansion of human peripheral blood γδ T cells using zoledronate[J]. J Vis Exp, 2011( 55): 3182. DOI: 10.3791/3182.
    [19] HOERES T, SMETAK M, PRETSCHER D, et al. Improving the efficiency of Vγ9Vδ2 T-cell immunotherapy in cancer[J]. Front Immunol, 2018, 9: 800. DOI: 10.3389/fimmu.2018.00800.
    [20] DIELI F, VERMIJLEN D, FULFARO F, et al. Targeting human{gamma}delta}T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer[J]. Cancer Res, 2007, 67( 15): 7450- 7457. DOI: 10.1158/0008-5472.CAN-07-0199.
    [21] BANERJEE M, MIDDYA S, SHRIVASTAVA R, et al. G10 is a direct activator of human STING[J]. PLoS One, 2020, 15( 9): e0237743. DOI: 10.1371/journal.pone.0237743.
    [22] HAAG SM, GULEN MF, REYMOND L, et al. Targeting STING with covalent small-molecule inhibitors[J]. Nature, 2018, 559( 7713): 269- 273. DOI: 10.1038/s41586-018-0287-8.
    [23] ZHU ZX, LI HX, LU QZ, et al. mRNA-engineered CD5-CAR-γδTCD5- cells for the immunotherapy of T-cell acute lymphoblastic leukemia[J]. Adv Sci(Weinh), 2024, 11( 35): e2400024. DOI: 10.1002/advs.202400024.
    [24] BADOVINAC VP, TVINNEREIM AR, HARTY JT. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma[J]. Science, 2000, 290( 5495): 1354- 1358. DOI: 10.1126/science.290.5495.1354.
    [25] YIN KL, CHU KJ, LI M, et al. Immune regulatory networks and therapy of γδ T cells in liver cancer: Recent trends and advancements[J]. J Clin Transl Hepatol, 2024, 12( 3): 287- 297. DOI: 10.14218/JCTH.2023.00355.
    [26] ZAKERI N, HALL A, SWADLING L, et al. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma[J]. Nat Commun, 2022, 13: 1372. DOI: 10.1038/s41467-022-29012-1.
    [27] YUAN MG, WANG WJ, HAWES I, et al. Advancements in γδT cell engineering: Paving the way for enhanced cancer immunotherapy[J]. Front Immunol, 2024, 15: 1360237. DOI: 10.3389/fimmu.2024.1360237.
    [28] LI XM, LU HM, GU YZ, et al. Tim-3 suppresses the killing effect of Vγ9Vδ2 T cells on colon cancer cells by reducing perforin and granzyme B expression[J]. Exp Cell Res, 2020, 386( 1): 111719. DOI: 10.1016/j.yexcr.2019.111719.
    [29] LIN JJ, ZENG DY, HE HY, et al. Gene therapy for human ovarian cancer cells using efficient expression of Fas gene combined with γδT cells[J]. Mol Med Rep, 2017, 16( 4): 3791- 3798. DOI: 10.3892/mmr.2017.7107.
    [30] AHN EY, PAN G, VICKERS SM, et al. IFN-gammaupregulates apoptosis-related molecules and enhances Fas-mediated apoptosis in human cholangiocarcinoma[J]. Int J Cancer, 2002, 100( 4): 445- 451. DOI: 10.1002/ijc.10516.
    [31] ABE T, BARBER GN. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1[J]. J Virol, 2014, 88( 10): 5328- 5341. DOI: 10.1128/JVI.00037-14.
    [32] VIEIRA RS, NASCIMENTO MS, NORONHA IH, et al. STING signaling drives production of innate cytokines, generation of CD8+ T cells and enhanced protection against Trypanosoma cruzi infection[J]. Front Immunol, 2022, 12: 775346. DOI: 10.3389/fimmu.2021.775346.
    [33] KUSE N, SUN XM, AKAHOSHI T, et al. Priming of HIV-1-specific CD8+ T cells with strong functional properties from naïve T cells[J]. EBioMedicine, 2019, 42: 109- 119. DOI: 10.1016/j.ebiom.2019.03.078.
    [34] SU QY, WANG F, DONG ZB, et al. IFN-γ induces apoptosis in human melanocytes by activating the JAK1/STAT1 signaling pathway[J]. Mol Med Rep, 2020, 22( 4): 3111- 3116. DOI: 10.3892/mmr.2020.11403.
    [35] BRAUMÜLLER H, WIEDER T, BRENNER E, et al. T-helper-1-cell cytokines drive cancer into senescence[J]. Nature, 2013, 494( 7437): 361- 365. DOI: 10.1038/nature11824.
    [36] BOIERI M, MARCHESE E, PHAM QM, et al. Thymic stromal lymphopoietin-stimulated CD4+ T cells induce senescence in advanced breast cancer[J]. Front Cell Dev Biol, 2022, 10: 1002692. DOI: 10.3389/fcell.2022.1002692.
    [37] JORGOVANOVIC D, SONG MJ, WANG LP, et al. Roles of IFN-γ in tumor progression and regression: A review[J]. Biomark Res, 2020, 8: 49. DOI: 10.1186/s40364-020-00228-x.
    [38] KAMMERTOENS T, FRIESE C, ARINA A, et al. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression[J]. Nature, 2017, 545( 7652): 98- 102. DOI: 10.1038/nature22311.
    [39] KRUSE B, BUZZAI AC, SHRIDHAR N, et al. CD4+ T cell-induced inflammatory cell death controls immune-evasive tumours[J]. Nature, 2023, 618( 7967): 1033- 1040. DOI: 10.1038/s41586-023-06199-x.
    [40] GUILLAUME J, PERZOLLI A, BOES M. Strategies to overcome low MHC-I expression in paediatric and adult tumours[J]. Immunother Adv, 2023, 4( 1): ltad028. DOI: 10.1093/immadv/ltad028.
    [41] CHOSA N, KYAKUMOTO S, KITO N, et al. Mechanism of Fas-mediated cell death and its enhancement by TNF-alpha in human salivary gland adenocarcinoma cell line HSG[J]. Eur J Oral Sci, 2004, 112( 4): 338- 346. DOI: 10.1111/j.1600-0722.2004.00145.x.
    [42] BAKSHI HA, QUINN GA, NASEF MM, et al. Crocin inhibits angiogenesis and metastasis in colon cancer via TNF-α/NF-kB/VEGF pathways[J]. Cells, 2022, 11( 9): 1502. DOI: 10.3390/cells11091502.
    [43] DENG Y, GAO HY, WU QH. T-2 toxin induces immunosenescence in RAW264.7 macrophages by activating the HIF-1α/cGAS-STING pathway[J]. J Agric Food Chem, 2024, 72( 43): 24046- 24057. DOI: 10.1021/acs.jafc.4c07268.
    [44] WU SY, XIAO Y, WEI JL, et al. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer[J]. J Immunother Cancer, 2021, 9( 7): e002528. DOI: 10.1136/jitc-2021-002528.
    [45] LIU FR, LIAO ZB, ZHANG ZG. MYC in liver cancer: Mechanisms and targeted therapy opportunities[J]. Oncogene, 2023, 42( 45): 3303- 3318. DOI: 10.1038/s41388-023-02861-w.
  • 加载中
图(5)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  1
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-12
  • 录用日期:  2025-05-23
  • 出版日期:  2025-12-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回