胆道恶性肿瘤的免疫治疗现状及研究进展
DOI: 10.12449/JCH251202
-
摘要: 胆道恶性肿瘤(BTC)是一种高度恶性、预后较差的消化道肿瘤,其有限的治疗手段和复杂的肿瘤微环境构成了临床治疗的主要挑战。本文系统梳理BTC免疫微环境的基本特征,进一步综述了免疫检查点抑制剂在BTC治疗中的作用,同时探讨癌症疫苗和过继性细胞免疫疗法等前沿策略。尽管BTC的高度异质性与免疫抑制微环境仍是制约疗效提升的主要障碍,未来基于多组学的生物标志物体系构建、新型联合策略的探索以及对免疫微环境的深度调控有望改善BTC患者的预后。Abstract: Biliary tract cancer (BTC) is a highly malignant gastrointestinal tumor with a poor prognosis, and its limited treatment options and complex tumor microenvironment have posed significant challenges in clinical treatment. This article systematically describes the fundamental features of the immunosupressive microenvironment in BTC and reviews the role of immune checkpoint inhibitors in the treatment of BTC, as well as the emerging strategies such as cancer vaccines and adoptive cell transfer therapy. Although the improvement in treatment outcome is limited by high tumor heterogeneity and the immunosuppressive microenvironment, it is expected to improve the prognosis of BTC patients by constructing a biomarker system based on multi-omics, exploring novel combined treatment strategies, and deeply regulating the tumor microenvironment.
-
Key words:
- Biliary Tract Neoplasms /
- Immunotherapy /
- Therapeutics
-
表 1 BTC免疫治疗响应相关生物标志物及相关研究
Table 1. Biomarkers and related research related to the response of immunotherapy for BTC
生物标志物 关键研究 研究方案 研究结果 参考文献 dMMR和MSI 多中心回顾性队列
研究(n=48)37例MSI/dMMR BTC患者接受
ICI治疗中位OS为40.9个月,3年总生存率为53.8%,总
体ORR为36%,完全缓解率为17%,中位PFS为
11.24个月[16] KEYNOTE-158研究
(Phase Ⅱ,n=22)22例MSI/dMMR BTC患者接受帕
博利珠单抗治疗中位OS为24.3个月,ORR为40.9% [17] 5项单臂研究汇总
分析多项研究中MSI/dMMR BTC患者
接受帕博利珠单抗治疗ORR为27%,反应持续时间为11.6~19.6个月 [18] TMB Lin等对中国BTC患
者的基因组研究
(n=803)803例中46例BTC患者接受TMB
匹配的靶向治疗整体队列的中位TMB为1.23个Mut/Mb,4.1%患
者的TMB≥9.36 Mut/Mb,被定义为高TMB;46例
靶向治疗队列的ORR为26.1%,PFS为5个月,
56.8%患者PFS获益[19] 整合临床和分子分
析(n=26)26例晚期微卫星稳定型的BTC
患者中17例进行高通量测序TMB水平高低与PFS无关,高TMB与高ORR
相关[20] PD-L1表达 TOPAZ-1临床试验
(Phase Ⅲ,n=685)341例患者接受度伐利尤单抗联
合GC方案,344例患者接受安慰
剂联合GC方案PD-L1的TAP高低与患者的生存获益无关(TAP
≥1%:HR=0.79 vs TAP<1%:HR=0.86)[5] KEYNOTE-966临床
试验(Phase Ⅲ,
n=1 069)533例患者接受帕博利珠单抗联
合GC方案,536例患者接受安慰
剂联合GC方案无论患者肿瘤的PD-L1的CPS高低,添加帕博
利珠单抗都能带来生存获益(CPS<1:HR=0.79
vs CPS>1:HR=0.85)[6] KEYNOTE-028研究
(Phase Ⅰb,n=475)475例晚期PD-L1阳性的实体瘤
患者BTC患者中PD-L1表达越高,ORR和PFS表现
越好[21] 注:dMMR,错配修复缺陷;MSI,微卫星不稳定;BTC,胆道恶性肿瘤;ICI,免疫检查点抑制剂;OS,总生存期;ORR,客观缓解率;PFS,无进展生存期;TMB,肿瘤突变负荷;GC方案,吉西他滨和顺铂方案;PD-L1,程序性死亡配体1;TAP,肿瘤区域阳性比例;CPS,综合阳性评分。
表 2 BTC免疫治疗策略
Table 2. Immunotherapy strategies for BTC
治疗方案 关键研究 研究方案 研究结果 ICI ICI单药治疗 KEYNOTE-158试验
(Phase Ⅱ,n=104)[25]PD-1抑制剂帕博利珠单抗治疗晚期
BTC患者61例PD-L1阳性患者的中位OS为7.2个月,
中位PFS为1.9个月;43例PD-L1阴性患者的
中位OS为9.3个月,中位PFS为2.1个月KEYNOTE-028试验
(Phase Ⅰb,n=24)[25]中位OS为5.7个月,中位PFS为1.8个月 Ⅱ期临床试验
(n=54)[26]PD-L1抑制剂度伐利尤单抗治疗晚期
BTC患者中位OS为14.24个月,中位PFS为3.68个月,
疾病控制率为59%ICI联合化疗
(GC方案)TOPAZ-1临床试验
(Phase Ⅲ,n=685)[5]341例患者接受度伐利尤单抗联合GC
方案,344例患者接受安慰剂联合GC
方案联合方案相比单纯化疗,显著延长中位OS
(12.8个月vs 11.5个月)和中位PFS(7.2个月
vs 5.7个月)KEYNOTE-966
临床试验
(Phase Ⅲ,n=1 069)[6]533例患者接受帕博利珠单抗联合GC
方案,536例患者接受安慰剂联合GC
方案联合方案相比单纯化疗,显著延长中位OS
(12.7个月vs 10.9个月)和中位PFS(6.5个月
vs 5.6个月)Ⅱ期临床试验
(n=32)[27]PD-1抑制剂纳武利尤单抗治疗晚期
BTC患者15例患者达到客观缓解,包括5例完全缓解,
疾病控制率为92.6%,中位OS为8.5个月,
中位PFS为6.1个月Ⅱ期临床试验
(n=30)[28]PD-1抑制剂信迪利单抗治疗晚期BTC
患者中位OS为15.9个月,中位PFS为5.1个月,
ORR为36.7%ICI联合靶向治疗 Ⅱ期临床试验
(n=32)[29]PD-1抑制剂帕博利珠单抗联合激酶抑
制剂仑伐替尼治疗BTC患者中位OS为11个月,中位PFS为4.9个月,ORR
为25%,疾病控制率为78.1%REGOMUNE试验
(n=34)[30]PD-L1抑制剂阿维鲁单抗联合多激酶抑
制剂瑞戈非尼治疗晚期BTC患者4例患者部分缓解,11例患者疾病稳定,疾病
控制率为51.7%,中位OS为11.9个月多中心Ⅱ期临床
试验[31]PD-L1抑制剂阿替利珠单抗联合MEK
靶向抑制剂考比替尼治疗晚期BTC
患者延长PFS(3.65个月vs 1.87个月),肿瘤进展或
死亡的风险降低42%ICI联合其他治疗 双免疫检查点
抑制疗法临床试验
(n=39)[32]PD-1抑制剂纳武利尤单抗联合CTLA-4
抑制剂伊匹木单抗治疗晚期BTC患者ORR为23%,疾病控制率为44% ICI联合放疗 临床试验(n=20)[33] CTLA-4抑制剂替西木单抗联合微波消
融治疗BTC患者2例患者在未消融病灶观察到持久应答 多免疫联合化疗 ZSAB-TOP研究
(n=45)[34]PD-1抑制剂替雷利珠单抗和TIGIT抑制
剂欧司珀利单抗联合GC方案治疗晚期
BTC患者ORR为51.2%,疾病控制率为82.9% 癌症疫苗 Ⅰ期临床试验[35] 多肽疫苗(CDCA1、CDH3、KIF20A)治疗
晚期BTC患者PFS为3.4个月,中位OS为9.7个月 一项术后联合免疫
疗法[36]树突状细胞疫苗联合激活T细胞回输
(ATVAC)治疗术后BTC患者联合方案的中位PFS为18.3个月(vs 7.7个
月),中位OS为31.9个月(vs 17.4个月)过继性免疫细胞疗法 Ⅰ期临床试验
(n=19)[37]CART-EGFR细胞治疗EGFR阳性晚期
BTC患者10例患者病情稳定,1例患者完全缓解,中位
PFS为4个月Ⅰ期临床试验
(n=11)[38]CART-HER2细胞治疗HER2阳性晚期
BTC患者4例患者得到有效控制,中位PFS为4.8个月 注:ICI,免疫检查点抑制剂;PD-1,程序性死亡受体1;PD-L1,程序性死亡配体1;BTC,胆道恶性肿瘤;OS,总生存期;PFS,无进展生存期;GC方案,吉西他滨和顺铂方案;ORR,客观缓解率;MEK,丝裂原活化蛋白激酶激酶。
-
[1] VALLE JW, KELLEY RK, NERVI B, et al. Biliary tract cancer[J]. Lancet, 2021, 397( 10272): 428- 444. DOI: 10.1016/s0140-6736(21)00153-7. [2] BANALES JM, MARIN JJG, LAMARCA A, et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17( 9): 557- 588. DOI: 10.1038/s41575-020-0310-z. [3] HAN BF, ZHENG RS, ZENG HM, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4( 1): 47- 53. DOI: 10.1016/j.jncc.2024.01.006. [4] LEE YT, WANG JJ, LUU M, et al. Comparison of clinical features and outcomes between intrahepatic cholangiocarcinoma and hepatocellular carcinoma in the United States[J]. Hepatology, 2021, 74( 5): 2622- 2632. DOI: 10.1002/hep.32007. [5] OH DY, RUTH HE A, QIN SK, et al. Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer[J]. NEJM Evid, 2022, 1( 8): EVIDoa2200015. DOI: 10.1056/evidoa2200015. [6] KELLEY RK, UENO M, YOO C, et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer(KEYNOTE-966): A randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2023, 401( 10391): 1853- 1865. DOI: 10.1016/S0140-6736(23)00727-4. [7] LIU CL, WANG X, LIU ED, et al. Deciphering cholangiocarcinoma heterogeneity and specific progenitor cell niche of extrahepatic cholangiocarcinoma at single-cell resolution[J]. J Hematol Oncol, 2025, 18( 1): 66. DOI: 10.1186/s13045-025-01716-z. [8] JOB S, RAPOUD D, DOS SANTOS A, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma[J]. Hepatology, 2020, 72( 3): 965- 981. DOI: 10.1002/hep.31092. [9] ZHOU T, WU YH, LI S, et al. Multi-omic analysis of gallbladder cancer identifies distinct tumor microenvironments associated with disease progression[J]. Nat Genet, 2025, 57( 8): 1935- 1949. DOI: 10.1038/s41588-025-02236-9. [10] WANG X, LIU CL, CHEN JN, et al. Single-cell dissection of remodeled inflammatory ecosystem in primary and metastatic gallbladder carcinoma[J]. Cell Discov, 2022, 8: 101. DOI: 10.1038/s41421-022-00445-8. [11] SHI XB, LI ZX, YAO RQ, et al. Single-cell atlas of diverse immune populations in the advanced biliary tract cancer microenvironment[J]. NPJ Precis Onc, 2022, 6: 58. DOI: 10.1038/s41698-022-00300-9. [12] AFFO S, YU LX, SCHWABE RF. The role of cancer-associated fibroblasts and fibrosis in liver cancer[J]. Annu Rev Pathol Mech Dis, 2017, 12: 153- 186. DOI: 10.1146/annurev-pathol-052016-100322. [13] LOEUILLARD E, YANG JC, BUCKARMA E, et al. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma[J]. J Clin Investig, 2020, 130( 10): 5380- 5396. DOI: 10.1172/jci137110. [14] CHEN J, AMOOZGAR Z, LIU X, et al. Reprogramming the intrahepatic cholangiocarcinoma immune microenvironment by chemotherapy and CTLA-4 blockade enhances anti-PD-1 therapy[J]. Cancer Immunol Res, 2024, 12( 4): 400- 412. DOI: 10.1158/2326-6066.CIR-23-0486. [15] HE X, PENG YR, HE G, et al. Increased co-expression of PD1 and TIM3 is associated with poor prognosis and immune microenvironment heterogeneity in gallbladder cancer[J]. J Transl Med, 2023, 21( 1): 717. DOI: 10.1186/s12967-023-04589-3. [16] CAMPO-LE-BRUN I, GRAPINET E, AURILLAC V, et al. Real-world efficacy of immune checkpoint inhibitors in microsatellite unstable/mismatch repair-deficient biliary tract cancer: An AGEO study[J]. Eur J Cancer, 2025, 227: 115670. DOI: 10.1016/j.ejca.2025.115670. [17] MARABELLE A, LE DT, ASCIERTO PA, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase II KEYNOTE-158 study[J]. J Clin Oncol, 2020, 38( 1): 1- 10. DOI: 10.1200/jco.19.02105. [18] LEMERY S, KEEGAN P, PAZDUR R. First FDA approval agnostic of cancer site: When a biomarker defines the indication[J]. N Engl J Med, 2017, 377( 15): 1409- 1412. DOI: 10.1056/nejmp1709968. [19] LIN JZ, CAO YH, YANG X, et al. Mutational spectrum and precision oncology for biliary tract carcinoma[J]. Theranostics, 2021, 11( 10): 4585- 4598. DOI: 10.7150/thno.56539. [20] LI JJ, WEI Q, WU XY, et al. Integrative clinical and molecular analysis of advanced biliary tract cancers on immune checkpoint blockade reveals potential markers of response[J]. Clin Transl Med, 2020, 10( 4): e118. DOI: 10.1002/ctm2.118. [21] OTT PA, BANG YJ, PIHA-PAUL SA, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028[J]. J Clin Oncol, 2019, 37( 4): 318- 327. DOI: 10.1200/jco.2018.78.2276. [22] VOGEL A, BRIDGEWATER J, EDELINE J, et al. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2023, 34( 2): 127- 140. DOI: 10.1016/j.annonc.2022.10.506. [23] YANG X, LIAN BF, ZHANG N, et al. Genomic characterization and immunotherapy for microsatellite instability-high in cholangiocarcinoma[J]. BMC Med, 2024, 22( 1): 42. DOI: 10.1186/s12916-024-03257-7. [24] GOODMAN AM, SOKOL ES, FRAMPTON GM, et al. Microsatellite-stable tumors with high mutational burden benefit from immunotherapy[J]. Cancer Immunol Res, 2019, 7( 10): 1570- 1573. DOI: 10.1158/2326-6066.cir-19-0149. [25] PIHA-PAUL SA, OH DY, UENO M, et al. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028 studies[J]. Int J Cancer, 2020, 147( 8): 2190- 2198. DOI: 10.1002/ijc.33013. [26] KIM RD, CHUNG V, ALESE OB, et al. A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer[J]. JAMA Oncol, 2020, 6( 6): 888. DOI: 10.1001/jamaoncol.2020.0930. [27] FENG KC, LIU Y, ZHAO YT, et al. Efficacy and biomarker analysis of nivolumab plus gemcitabine and cisplatin in patients with unresectable or metastatic biliary tract cancers: Results from a phase II study[J]. J Immunother Cancer, 2020, 8( 1): e000367. DOI: 10.1136/jitc-2019-000367. [28] ZENG TM, YANG G, LOU C, et al. Clinical and biomarker analyses of sintilimab plus gemcitabine and cisplatin as first-line treatment for patients with advanced biliary tract cancer[J]. Nat Commun, 2023, 14: 1340. DOI: 10.1038/s41467-023-37030-w. [29] LIN JZ, YANG X, LONG JY, et al. Pembrolizumab combined with lenvatinib as non-first-line therapy in patients with refractory biliary tract carcinoma[J]. Hepatobiliary Surg Nutr, 2020, 9( 4): 414- 424. DOI: 10.21037/hbsn-20-338. [30] COUSIN S, CANTAREL C, GUEGAN JP, et al. Regorafenib–avelumab combination in patients with biliary tract cancer(REGOMUNE): A single-arm, open-label, phase II trial[J]. Eur J Cancer, 2022, 162: 161- 169. DOI: 10.1016/j.ejca.2021.11.012. [31] YARCHOAN M, COPE L, RUGGIERI AN, et al. Multicenter randomized phase II trial of atezolizumab with or without cobimetinib in biliary tract cancers[J]. J Clin Investig, 2021, 131( 24): e152670. DOI: 10.1172/jci152670. [32] KLEIN O, KEE D, NAGRIAL A, et al. Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: Subgroup analysis of a phase 2 nonrandomized clinical trial[J]. JAMA Oncol, 2020, 6( 9): 1405. DOI: 10.1001/jamaoncol.2020.2814. [33] XIE CQ, DUFFY AG, MABRY-HRONES D, et al. Tremelimumab in combination with microwave ablation in patients with refractory biliary tract cancer[J]. Hepatology, 2019, 69( 5): 2048- 2060. DOI: 10.1002/hep.30482. [34] SHI GM, HUANG XY, MA L, et al. First-line tislelizumab and ociperlimab combined with gemcitabine and cisplatin in advanced biliary tract cancer(ZSAB-TOP): A multicenter, single-arm, phase 2 study[J]. Sig Transduct Target Ther, 2025, 10: 260. DOI: 10.1038/s41392-025-02356-y. [35] ARUGA A, TAKESHITA N, KOTERA Y, et al. Phase I clinical trial of multiple-peptide vaccination for patients with advanced biliary tract cancer[J]. J Transl Med, 2014, 12( 1): 61. DOI: 10.1186/1479-5876-12-61. [36] SHIMIZU K, KOTERA Y, ARUGA A, et al. Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma[J]. J Hepato Biliary Pancreat Sci, 2012, 19( 2): 171- 178. DOI: 10.1007/s00534-011-0437-y. [37] GUO Y, FENG K, LIU Y, et al. Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers[J]. Clin Cancer Res, 2018, 24( 6): 1277- 1286. [38] FENG KC, LIU Y, GUO YL, et al. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers[J]. Protein Cell, 2018, 9( 10): 838- 847. DOI: 10.1007/s13238-017-0440-4. [39] OH DY, HE AR, BOUATTOUR M, et al. Durvalumab or placebo plus gemcitabine and cisplatin in participants with advanced biliary tract cancer(TOPAZ-1): Updated overall survival from a randomised phase 3 study[J]. Lancet Gastroenterol Hepatol, 2024, 9( 8): 694- 704. DOI: 10.1016/s2468-1253(24)00095-5. [40] HANAHAN D, WEINBERG RA. The hallmarks of cancer[J]. Cell, 2000, 100( 1): 57- 70. DOI: 10.1016/s0092-8674(00)81683-9. [41] ZHU XD, TANG ZY, SUN HC. Targeting angiogenesis for liver cancer: Past, present, and future[J]. Genes Dis, 2020, 7( 3): 328- 335. DOI: 10.1016/j.gendis.2020.03.010. [42] ALLEN E, JABOUILLE A, RIVERA LB, et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation[J]. Sci Transl Med, 2017, 9( 385): eaak9679. DOI: 10.1126/scitranslmed.aak9679. [43] KREIDIEH M, ZEIDAN YH, SHAMSEDDINE A. The combination of stereotactic body radiation therapy and immunotherapy in primary liver tumors[J]. J Oncol, 2019, 2019: 4304817. DOI: 10.1155/2019/4304817. [44] MORSE MA, GWIN WR, MITCHELL DA. Vaccine therapies for cancer: Then and now[J]. Target Oncol, 2021, 16( 2): 121- 152. DOI: 10.1007/s11523-020-00788-w. [45] TANG TY, HUANG X, ZHANG G, et al. mRNA vaccine development for cholangiocarcinoma: A precise pipeline[J]. Mil Med Res, 2022, 9( 1): 40. DOI: 10.1186/s40779-022-00399-8. [46] PANDEY A, STAWISKI EW, DURINCK S, et al. Integrated genomic analysis reveals mutated ELF3 as a potential gallbladder cancer vaccine candidate[J]. Nat Commun, 2020, 11: 4225. DOI: 10.1038/s41467-020-17880-4. [47] PAN K, FARRUKH H, CHITTEPU VCSR, et al. CAR race to cancer immunotherapy: From CAR T, CAR NK to CAR macrophage therapy[J]. J Exp Clin Cancer Res, 2022, 41( 1): 119. DOI: 10.1186/s13046-022-02327-z. [48] TRAN E, TURCOTTE S, GROS A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer[J]. Science, 2014, 344( 6184): 641- 645. DOI: 10.1126/science.1251102. [49] SUPIMON K, SANGSUWANNUKUL T, SUJJITJOON J, et al. Anti-mucin 1 chimeric antigen receptor T cells for adoptive T cell therapy of cholangiocarcinoma[J]. Sci Rep, 2021, 11: 6276. DOI: 10.1038/s41598-021-85747-9. [50] SANGSUWANNUKUL T, SUPIMON K, SUJJITJOON J, et al. Anti-tumour effect of the fourth-generation chimeric antigen receptor T cells targeting CD133 against cholangiocarcinoma cells[J]. Int Immunopharmacol, 2020, 89: 107069. DOI: 10.1016/j.intimp.2020.107069. -
本文二维码
计量
- 文章访问数: 9
- HTML全文浏览量: 1
- PDF下载量: 15
- 被引次数: 0

PDF下载 ( 656 KB)
下载: 