中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胆道恶性肿瘤的免疫治疗现状及研究进展

李鑫 敖建阳 王敬晗 姜小清

引用本文:
Citation:

胆道恶性肿瘤的免疫治疗现状及研究进展

DOI: 10.12449/JCH251202
基金项目: 

上海市浦东新区卫健委重点学科建设项目 (PWZxk2022-02);

上海市浦东新区卫健委卫生计生科技青年科技项目 (PW2022B-07);

国家自然科学基金面上项目 (82472875)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:李鑫负责设计课题,收集数据,撰写论文;敖建阳、王敬晗负责分析资料,修改论文;姜小清负责拟定写作思路,指导撰写文章并最终定稿。
详细信息
    通信作者:

    姜小清, jxq1225@vip.sina.cn (ORCID: 0000-0003-2102-4039)

Immunotherapy for biliary tract cancer: Current status and research advances

Research funding: 

Key Discipline Construction Project of Shanghai Pudong New Area Health Commission (PWZxk2022-02);

The Youth Science and Technology Project of Shanghai Pudong New Area Health Commission (PW2022B-07);

General Project of National Natural Science Foundation of China (82472875)

More Information
    Corresponding author: JIANG Xiaoqing, jxq1225@vip.sina.cn (ORCID: 0000-0003-2102-4039)
  • 摘要: 胆道恶性肿瘤(BTC)是一种高度恶性、预后较差的消化道肿瘤,其有限的治疗手段和复杂的肿瘤微环境构成了临床治疗的主要挑战。本文系统梳理BTC免疫微环境的基本特征,进一步综述了免疫检查点抑制剂在BTC治疗中的作用,同时探讨癌症疫苗和过继性细胞免疫疗法等前沿策略。尽管BTC的高度异质性与免疫抑制微环境仍是制约疗效提升的主要障碍,未来基于多组学的生物标志物体系构建、新型联合策略的探索以及对免疫微环境的深度调控有望改善BTC患者的预后。

     

  • 表  1  BTC免疫治疗响应相关生物标志物及相关研究

    Table  1.   Biomarkers and related research related to the response of immunotherapy for BTC

    生物标志物 关键研究 研究方案 研究结果 参考文献
    dMMR和MSI 多中心回顾性队列
    研究(n=48)
    37例MSI/dMMR BTC患者接受
    ICI治疗
    中位OS为40.9个月,3年总生存率为53.8%,总
    体ORR为36%,完全缓解率为17%,中位PFS为
    11.24个月
    16
    KEYNOTE-158研究
    (Phase Ⅱ,n=22)
    22例MSI/dMMR BTC患者接受帕
    博利珠单抗治疗
    中位OS为24.3个月,ORR为40.9% 17
    5项单臂研究汇总
    分析
    多项研究中MSI/dMMR BTC患者
    接受帕博利珠单抗治疗
    ORR为27%,反应持续时间为11.6~19.6个月 18
    TMB Lin等对中国BTC患
    者的基因组研究
    n=803)
    803例中46例BTC患者接受TMB
    匹配的靶向治疗
    整体队列的中位TMB为1.23个Mut/Mb,4.1%患
    者的TMB≥9.36 Mut/Mb,被定义为高TMB;46例
    靶向治疗队列的ORR为26.1%,PFS为5个月,
    56.8%患者PFS获益
    19
    整合临床和分子分
    析(n=26)
    26例晚期微卫星稳定型的BTC
    患者中17例进行高通量测序
    TMB水平高低与PFS无关,高TMB与高ORR
    相关
    20
    PD-L1表达 TOPAZ-1临床试验
    (Phase Ⅲ,n=685)
    341例患者接受度伐利尤单抗联
    合GC方案,344例患者接受安慰
    剂联合GC方案
    PD-L1的TAP高低与患者的生存获益无关(TAP
    ≥1%:HR=0.79 vs TAP<1%:HR=0.86)
    5
    KEYNOTE-966临床
    试验(Phase Ⅲ,
    n=1 069)
    533例患者接受帕博利珠单抗联
    合GC方案,536例患者接受安慰
    剂联合GC方案
    无论患者肿瘤的PD-L1的CPS高低,添加帕博
    利珠单抗都能带来生存获益(CPS<1:HR=0.79
    vs CPS>1:HR=0.85)
    6
    KEYNOTE-028研究
    (Phase Ⅰb,n=475)
    475例晚期PD-L1阳性的实体瘤
    患者
    BTC患者中PD-L1表达越高,ORR和PFS表现
    越好
    21

    注:dMMR,错配修复缺陷;MSI,微卫星不稳定;BTC,胆道恶性肿瘤;ICI,免疫检查点抑制剂;OS,总生存期;ORR,客观缓解率;PFS,无进展生存期;TMB,肿瘤突变负荷;GC方案,吉西他滨和顺铂方案;PD-L1,程序性死亡配体1;TAP,肿瘤区域阳性比例;CPS,综合阳性评分。

    下载: 导出CSV

    表  2  BTC免疫治疗策略

    Table  2.   Immunotherapy strategies for BTC

    治疗方案 关键研究 研究方案 研究结果
    ICI
    ICI单药治疗 KEYNOTE-158试验
    (Phase Ⅱ,n=104)25
    PD-1抑制剂帕博利珠单抗治疗晚期
    BTC患者
    61例PD-L1阳性患者的中位OS为7.2个月,
    中位PFS为1.9个月;43例PD-L1阴性患者的
    中位OS为9.3个月,中位PFS为2.1个月
    KEYNOTE-028试验
    (Phase Ⅰb,n=24)25
    中位OS为5.7个月,中位PFS为1.8个月
    Ⅱ期临床试验
    n=54)26
    PD-L1抑制剂度伐利尤单抗治疗晚期
    BTC患者
    中位OS为14.24个月,中位PFS为3.68个月,
    疾病控制率为59%
    ICI联合化疗
    (GC方案)
    TOPAZ-1临床试验
    (Phase Ⅲ,n=685)5
    341例患者接受度伐利尤单抗联合GC
    方案,344例患者接受安慰剂联合GC
    方案
    联合方案相比单纯化疗,显著延长中位OS
    (12.8个月vs 11.5个月)和中位PFS(7.2个月
    vs 5.7个月)
    KEYNOTE-966
    临床试验
    (Phase Ⅲ,n=1 069)6
    533例患者接受帕博利珠单抗联合GC
    方案,536例患者接受安慰剂联合GC
    方案
    联合方案相比单纯化疗,显著延长中位OS
    (12.7个月vs 10.9个月)和中位PFS(6.5个月
    vs 5.6个月)
    Ⅱ期临床试验
    n=32)27
    PD-1抑制剂纳武利尤单抗治疗晚期
    BTC患者
    15例患者达到客观缓解,包括5例完全缓解,
    疾病控制率为92.6%,中位OS为8.5个月,
    中位PFS为6.1个月
    Ⅱ期临床试验
    n=30)28
    PD-1抑制剂信迪利单抗治疗晚期BTC
    患者
    中位OS为15.9个月,中位PFS为5.1个月,
    ORR为36.7%
    ICI联合靶向治疗 Ⅱ期临床试验
    n=32)29
    PD-1抑制剂帕博利珠单抗联合激酶抑
    制剂仑伐替尼治疗BTC患者
    中位OS为11个月,中位PFS为4.9个月,ORR
    为25%,疾病控制率为78.1%
    REGOMUNE试验
    n=34)30
    PD-L1抑制剂阿维鲁单抗联合多激酶抑
    制剂瑞戈非尼治疗晚期BTC患者
    4例患者部分缓解,11例患者疾病稳定,疾病
    控制率为51.7%,中位OS为11.9个月
    多中心Ⅱ期临床
    试验31
    PD-L1抑制剂阿替利珠单抗联合MEK
    靶向抑制剂考比替尼治疗晚期BTC
    患者
    延长PFS(3.65个月vs 1.87个月),肿瘤进展或
    死亡的风险降低42%
    ICI联合其他治疗
    双免疫检查点
    抑制疗法
    临床试验
    n=39)32
    PD-1抑制剂纳武利尤单抗联合CTLA-4
    抑制剂伊匹木单抗治疗晚期BTC患者
    ORR为23%,疾病控制率为44%
    ICI联合放疗 临床试验(n=20)33 CTLA-4抑制剂替西木单抗联合微波消
    融治疗BTC患者
    2例患者在未消融病灶观察到持久应答
    多免疫联合化疗 ZSAB-TOP研究
    n=45)34
    PD-1抑制剂替雷利珠单抗和TIGIT抑制
    剂欧司珀利单抗联合GC方案治疗晚期
    BTC患者
    ORR为51.2%,疾病控制率为82.9%
    癌症疫苗 Ⅰ期临床试验35 多肽疫苗(CDCA1、CDH3、KIF20A)治疗
    晚期BTC患者
    PFS为3.4个月,中位OS为9.7个月
    一项术后联合免疫
    疗法36
    树突状细胞疫苗联合激活T细胞回输
    (ATVAC)治疗术后BTC患者
    联合方案的中位PFS为18.3个月(vs 7.7个
    月),中位OS为31.9个月(vs 17.4个月)
    过继性免疫细胞疗法 Ⅰ期临床试验
    n=19)37
    CART-EGFR细胞治疗EGFR阳性晚期
    BTC患者
    10例患者病情稳定,1例患者完全缓解,中位
    PFS为4个月
    Ⅰ期临床试验
    n=11)38
    CART-HER2细胞治疗HER2阳性晚期
    BTC患者
    4例患者得到有效控制,中位PFS为4.8个月

    注:ICI,免疫检查点抑制剂;PD-1,程序性死亡受体1;PD-L1,程序性死亡配体1;BTC,胆道恶性肿瘤;OS,总生存期;PFS,无进展生存期;GC方案,吉西他滨和顺铂方案;ORR,客观缓解率;MEK,丝裂原活化蛋白激酶激酶。

    下载: 导出CSV
  • [1] VALLE JW, KELLEY RK, NERVI B, et al. Biliary tract cancer[J]. Lancet, 2021, 397( 10272): 428- 444. DOI: 10.1016/s0140-6736(21)00153-7.
    [2] BANALES JM, MARIN JJG, LAMARCA A, et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17( 9): 557- 588. DOI: 10.1038/s41575-020-0310-z.
    [3] HAN BF, ZHENG RS, ZENG HM, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4( 1): 47- 53. DOI: 10.1016/j.jncc.2024.01.006.
    [4] LEE YT, WANG JJ, LUU M, et al. Comparison of clinical features and outcomes between intrahepatic cholangiocarcinoma and hepatocellular carcinoma in the United States[J]. Hepatology, 2021, 74( 5): 2622- 2632. DOI: 10.1002/hep.32007.
    [5] OH DY, RUTH HE A, QIN SK, et al. Durvalumab plus gemcitabine and cisplatin in advanced biliary tract cancer[J]. NEJM Evid, 2022, 1( 8): EVIDoa2200015. DOI: 10.1056/evidoa2200015.
    [6] KELLEY RK, UENO M, YOO C, et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer(KEYNOTE-966): A randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2023, 401( 10391): 1853- 1865. DOI: 10.1016/S0140-6736(23)00727-4.
    [7] LIU CL, WANG X, LIU ED, et al. Deciphering cholangiocarcinoma heterogeneity and specific progenitor cell niche of extrahepatic cholangiocarcinoma at single-cell resolution[J]. J Hematol Oncol, 2025, 18( 1): 66. DOI: 10.1186/s13045-025-01716-z.
    [8] JOB S, RAPOUD D, DOS SANTOS A, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma[J]. Hepatology, 2020, 72( 3): 965- 981. DOI: 10.1002/hep.31092.
    [9] ZHOU T, WU YH, LI S, et al. Multi-omic analysis of gallbladder cancer identifies distinct tumor microenvironments associated with disease progression[J]. Nat Genet, 2025, 57( 8): 1935- 1949. DOI: 10.1038/s41588-025-02236-9.
    [10] WANG X, LIU CL, CHEN JN, et al. Single-cell dissection of remodeled inflammatory ecosystem in primary and metastatic gallbladder carcinoma[J]. Cell Discov, 2022, 8: 101. DOI: 10.1038/s41421-022-00445-8.
    [11] SHI XB, LI ZX, YAO RQ, et al. Single-cell atlas of diverse immune populations in the advanced biliary tract cancer microenvironment[J]. NPJ Precis Onc, 2022, 6: 58. DOI: 10.1038/s41698-022-00300-9.
    [12] AFFO S, YU LX, SCHWABE RF. The role of cancer-associated fibroblasts and fibrosis in liver cancer[J]. Annu Rev Pathol Mech Dis, 2017, 12: 153- 186. DOI: 10.1146/annurev-pathol-052016-100322.
    [13] LOEUILLARD E, YANG JC, BUCKARMA E, et al. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma[J]. J Clin Investig, 2020, 130( 10): 5380- 5396. DOI: 10.1172/jci137110.
    [14] CHEN J, AMOOZGAR Z, LIU X, et al. Reprogramming the intrahepatic cholangiocarcinoma immune microenvironment by chemotherapy and CTLA-4 blockade enhances anti-PD-1 therapy[J]. Cancer Immunol Res, 2024, 12( 4): 400- 412. DOI: 10.1158/2326-6066.CIR-23-0486.
    [15] HE X, PENG YR, HE G, et al. Increased co-expression of PD1 and TIM3 is associated with poor prognosis and immune microenvironment heterogeneity in gallbladder cancer[J]. J Transl Med, 2023, 21( 1): 717. DOI: 10.1186/s12967-023-04589-3.
    [16] CAMPO-LE-BRUN I, GRAPINET E, AURILLAC V, et al. Real-world efficacy of immune checkpoint inhibitors in microsatellite unstable/mismatch repair-deficient biliary tract cancer: An AGEO study[J]. Eur J Cancer, 2025, 227: 115670. DOI: 10.1016/j.ejca.2025.115670.
    [17] MARABELLE A, LE DT, ASCIERTO PA, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase II KEYNOTE-158 study[J]. J Clin Oncol, 2020, 38( 1): 1- 10. DOI: 10.1200/jco.19.02105.
    [18] LEMERY S, KEEGAN P, PAZDUR R. First FDA approval agnostic of cancer site: When a biomarker defines the indication[J]. N Engl J Med, 2017, 377( 15): 1409- 1412. DOI: 10.1056/nejmp1709968.
    [19] LIN JZ, CAO YH, YANG X, et al. Mutational spectrum and precision oncology for biliary tract carcinoma[J]. Theranostics, 2021, 11( 10): 4585- 4598. DOI: 10.7150/thno.56539.
    [20] LI JJ, WEI Q, WU XY, et al. Integrative clinical and molecular analysis of advanced biliary tract cancers on immune checkpoint blockade reveals potential markers of response[J]. Clin Transl Med, 2020, 10( 4): e118. DOI: 10.1002/ctm2.118.
    [21] OTT PA, BANG YJ, PIHA-PAUL SA, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028[J]. J Clin Oncol, 2019, 37( 4): 318- 327. DOI: 10.1200/jco.2018.78.2276.
    [22] VOGEL A, BRIDGEWATER J, EDELINE J, et al. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2023, 34( 2): 127- 140. DOI: 10.1016/j.annonc.2022.10.506.
    [23] YANG X, LIAN BF, ZHANG N, et al. Genomic characterization and immunotherapy for microsatellite instability-high in cholangiocarcinoma[J]. BMC Med, 2024, 22( 1): 42. DOI: 10.1186/s12916-024-03257-7.
    [24] GOODMAN AM, SOKOL ES, FRAMPTON GM, et al. Microsatellite-stable tumors with high mutational burden benefit from immunotherapy[J]. Cancer Immunol Res, 2019, 7( 10): 1570- 1573. DOI: 10.1158/2326-6066.cir-19-0149.
    [25] PIHA-PAUL SA, OH DY, UENO M, et al. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028 studies[J]. Int J Cancer, 2020, 147( 8): 2190- 2198. DOI: 10.1002/ijc.33013.
    [26] KIM RD, CHUNG V, ALESE OB, et al. A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer[J]. JAMA Oncol, 2020, 6( 6): 888. DOI: 10.1001/jamaoncol.2020.0930.
    [27] FENG KC, LIU Y, ZHAO YT, et al. Efficacy and biomarker analysis of nivolumab plus gemcitabine and cisplatin in patients with unresectable or metastatic biliary tract cancers: Results from a phase II study[J]. J Immunother Cancer, 2020, 8( 1): e000367. DOI: 10.1136/jitc-2019-000367.
    [28] ZENG TM, YANG G, LOU C, et al. Clinical and biomarker analyses of sintilimab plus gemcitabine and cisplatin as first-line treatment for patients with advanced biliary tract cancer[J]. Nat Commun, 2023, 14: 1340. DOI: 10.1038/s41467-023-37030-w.
    [29] LIN JZ, YANG X, LONG JY, et al. Pembrolizumab combined with lenvatinib as non-first-line therapy in patients with refractory biliary tract carcinoma[J]. Hepatobiliary Surg Nutr, 2020, 9( 4): 414- 424. DOI: 10.21037/hbsn-20-338.
    [30] COUSIN S, CANTAREL C, GUEGAN JP, et al. Regorafenib–avelumab combination in patients with biliary tract cancer(REGOMUNE): A single-arm, open-label, phase II trial[J]. Eur J Cancer, 2022, 162: 161- 169. DOI: 10.1016/j.ejca.2021.11.012.
    [31] YARCHOAN M, COPE L, RUGGIERI AN, et al. Multicenter randomized phase II trial of atezolizumab with or without cobimetinib in biliary tract cancers[J]. J Clin Investig, 2021, 131( 24): e152670. DOI: 10.1172/jci152670.
    [32] KLEIN O, KEE D, NAGRIAL A, et al. Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: Subgroup analysis of a phase 2 nonrandomized clinical trial[J]. JAMA Oncol, 2020, 6( 9): 1405. DOI: 10.1001/jamaoncol.2020.2814.
    [33] XIE CQ, DUFFY AG, MABRY-HRONES D, et al. Tremelimumab in combination with microwave ablation in patients with refractory biliary tract cancer[J]. Hepatology, 2019, 69( 5): 2048- 2060. DOI: 10.1002/hep.30482.
    [34] SHI GM, HUANG XY, MA L, et al. First-line tislelizumab and ociperlimab combined with gemcitabine and cisplatin in advanced biliary tract cancer(ZSAB-TOP): A multicenter, single-arm, phase 2 study[J]. Sig Transduct Target Ther, 2025, 10: 260. DOI: 10.1038/s41392-025-02356-y.
    [35] ARUGA A, TAKESHITA N, KOTERA Y, et al. Phase I clinical trial of multiple-peptide vaccination for patients with advanced biliary tract cancer[J]. J Transl Med, 2014, 12( 1): 61. DOI: 10.1186/1479-5876-12-61.
    [36] SHIMIZU K, KOTERA Y, ARUGA A, et al. Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma[J]. J Hepato Biliary Pancreat Sci, 2012, 19( 2): 171- 178. DOI: 10.1007/s00534-011-0437-y.
    [37] GUO Y, FENG K, LIU Y, et al. Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers[J]. Clin Cancer Res, 2018, 24( 6): 1277- 1286.
    [38] FENG KC, LIU Y, GUO YL, et al. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers[J]. Protein Cell, 2018, 9( 10): 838- 847. DOI: 10.1007/s13238-017-0440-4.
    [39] OH DY, HE AR, BOUATTOUR M, et al. Durvalumab or placebo plus gemcitabine and cisplatin in participants with advanced biliary tract cancer(TOPAZ-1): Updated overall survival from a randomised phase 3 study[J]. Lancet Gastroenterol Hepatol, 2024, 9( 8): 694- 704. DOI: 10.1016/s2468-1253(24)00095-5.
    [40] HANAHAN D, WEINBERG RA. The hallmarks of cancer[J]. Cell, 2000, 100( 1): 57- 70. DOI: 10.1016/s0092-8674(00)81683-9.
    [41] ZHU XD, TANG ZY, SUN HC. Targeting angiogenesis for liver cancer: Past, present, and future[J]. Genes Dis, 2020, 7( 3): 328- 335. DOI: 10.1016/j.gendis.2020.03.010.
    [42] ALLEN E, JABOUILLE A, RIVERA LB, et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation[J]. Sci Transl Med, 2017, 9( 385): eaak9679. DOI: 10.1126/scitranslmed.aak9679.
    [43] KREIDIEH M, ZEIDAN YH, SHAMSEDDINE A. The combination of stereotactic body radiation therapy and immunotherapy in primary liver tumors[J]. J Oncol, 2019, 2019: 4304817. DOI: 10.1155/2019/4304817.
    [44] MORSE MA, GWIN WR, MITCHELL DA. Vaccine therapies for cancer: Then and now[J]. Target Oncol, 2021, 16( 2): 121- 152. DOI: 10.1007/s11523-020-00788-w.
    [45] TANG TY, HUANG X, ZHANG G, et al. mRNA vaccine development for cholangiocarcinoma: A precise pipeline[J]. Mil Med Res, 2022, 9( 1): 40. DOI: 10.1186/s40779-022-00399-8.
    [46] PANDEY A, STAWISKI EW, DURINCK S, et al. Integrated genomic analysis reveals mutated ELF3 as a potential gallbladder cancer vaccine candidate[J]. Nat Commun, 2020, 11: 4225. DOI: 10.1038/s41467-020-17880-4.
    [47] PAN K, FARRUKH H, CHITTEPU VCSR, et al. CAR race to cancer immunotherapy: From CAR T, CAR NK to CAR macrophage therapy[J]. J Exp Clin Cancer Res, 2022, 41( 1): 119. DOI: 10.1186/s13046-022-02327-z.
    [48] TRAN E, TURCOTTE S, GROS A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer[J]. Science, 2014, 344( 6184): 641- 645. DOI: 10.1126/science.1251102.
    [49] SUPIMON K, SANGSUWANNUKUL T, SUJJITJOON J, et al. Anti-mucin 1 chimeric antigen receptor T cells for adoptive T cell therapy of cholangiocarcinoma[J]. Sci Rep, 2021, 11: 6276. DOI: 10.1038/s41598-021-85747-9.
    [50] SANGSUWANNUKUL T, SUPIMON K, SUJJITJOON J, et al. Anti-tumour effect of the fourth-generation chimeric antigen receptor T cells targeting CD133 against cholangiocarcinoma cells[J]. Int Immunopharmacol, 2020, 89: 107069. DOI: 10.1016/j.intimp.2020.107069.
  • 加载中
表(2)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  1
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-27
  • 录用日期:  2025-11-17
  • 出版日期:  2025-12-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回