中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胆管细胞衰老在胆汁淤积性肝病中的作用机制及其靶向治疗进展

徐华明 杨柳 闫五玲 郑思嘉 杨念 刘延鑫

引用本文:
Citation:

胆管细胞衰老在胆汁淤积性肝病中的作用机制及其靶向治疗进展

DOI: 10.12449/JCH250836
基金项目: 

国家自然科学基金面上项目 (82074340);

河南省中医药科学研究专项重点项目 (2024ZY1030)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:徐华明、刘延鑫负责课题设计,资料分析,拟定写作思路;杨柳、徐华明负责撰写和修改论文;郑思嘉、杨念、闫五玲参与收集数据,核对最后定稿和参考文献;杨柳、徐华明负责图片绘制。
详细信息
    通信作者:

    刘延鑫, liuyanxin@126.com (ORCID: 0009-0009-2649-9659)

Mechanism of action of cholangiocyte senescence in cholestatic liver disease and retated targeted therapies

Research funding: 

National Natural Science Foundation of China General Project (82074340);

Key Program of Traditional Chinese Medicine Scientific Research in Henan Province (2024ZY1030)

More Information
    Corresponding author: LIU Yanxin, liuyanxin@126.com (ORCID: 0009-0009-2649-9659)
  • 摘要: 胆汁淤积性肝病(CLD)是由各种原因导致胆汁酸分泌和代谢障碍引起的肝脏病变,表现出许多慢性肝系疾病的共同病理特征。近年来,胆管细胞衰老(CS)在CLD发病过程中的作用越来越受到关注,不仅参与其发生和进展,而且与进程和预后显著相关。靶向清除胆管衰老细胞或阻断衰老相关通路可改善CLD。本文针对CS在CLD中的作用和影响因素、CLD现有研究进展进行归纳总结和探讨,以期为后续CLD的研究提供理论参考。

     

  • 注: SASP,衰老相关分泌表型。

    图  1  CLD病因和损伤机制

    Figure  1.  Etiology and injury mechanism of CLD

    图  2  CS在CLD中的作用机制图

    Figure  2.  Mechanism diagram of CS in CLD

  • [1] TRIVEDI PJ, HIRSCHFIELD GM, ADAMS DH, et al. Immunopathogenesis of primary biliary cholangitis, primary sclerosing cholangitis and autoimmune hepatitis: Themes and concepts[J]. Gastroenterology, 2024, 166( 6): 995- 1019. DOI: 10.1053/j.gastro.2024.01.049.
    [2] PARK JW, KIM JH, KIM SE, et al. Primary biliary cholangitis and primary sclerosing cholangitis: Current knowledge of pathogenesis and therapeutics[J]. Biomedicines, 2022, 10( 6): 1288. DOI: 10.3390/biomedicines10061288.
    [3] TANAKA A. New therapies on the horizon for primary biliary cholangitis[J]. Drugs, 2024, 84( 1): 1- 15. DOI: 10.1007/s40265-023-01979-1.
    [4] LEVY C, MANNS M, HIRSCHFIELD G. New treatment paradigms in primary biliary cholangitis[J]. Clin Gastroenterol Hepatol, 2023, 21( 8): 2076- 2087. DOI: 10.1016/j.cgh.2023.02.005.
    [5] FIORUCCI S, URBANI G, DI GIORGIO C, et al. Bile acids-based therapies for primary sclerosing cholangitis: Current landscape and future developments[J]. Cells, 2024, 13( 19): 1650. DOI: 10.3390/cells13191650.
    [6] LUO X, LU LG. Progress in the management of patients with cholestatic liver disease: Where are we and where are we going?[J]. J Clin Transl Hepatol, 2024, 12( 6): 581- 588. DOI: 10.14218/JCTH.2023.00519.
    [7] CAI XR, TACKE F, GUILLOT A, et al. Cholangiokines: Undervalued modulators in the hepatic microenvironment[J]. Front Immunol, 2023, 14: 1192840. DOI: 10.3389/fimmu.2023.1192840.
    [8] CHUNG BK, KARLSEN TH, FOLSERAAS T. Cholangiocytes in the pathogenesis of primary sclerosing cholangitis and development of cholangiocarcinoma[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864( 4 Pt B): 1390- 1400. DOI: 10.1016/j.bbadis.2017.08.020.
    [9] TRUSSONI CE, O’HARA SP, LARUSSO NF. Cellular senescence in the cholangiopathies: A driver of immunopathology and a novel therapeutic target[J]. Semin Immunopathol, 2022, 44( 4): 527- 544. DOI: 10.1007/s00281-022-00909-9.
    [10] JALAN-SAKRIKAR N, GUICCIARDI ME, O’HARA SP, et al. Central role for cholangiocyte pathobiology in cholestatic liver diseases[J]. Hepatology, 2024: 10.1097/HEP. 0000000000001093. DOI: 10.1097/HEP.0000000000001093.
    [11] WEI WQ, JI SP. Cellular senescence: Molecular mechanisms and pathogenicity[J]. J Cell Physiol, 2018, 233( 12): 9121- 9135. DOI: 10.1002/jcp.26956.
    [12] OGRODNIK M, ACOSTA JC, ADAMS PD, et al. Guidelines for minimal information on cellular senescence experimentation in vivo[J]. Cell, 2024, 187( 16): 4150- 4175. DOI: 10.1016/j.cell.2024.05.059.
    [13] ZHANG YM, HUANG SY, XIE B, et al. Aging, cellular senescence, and glaucoma[J]. Aging Dis, 2024, 15( 2): 546- 564. DOI: 10.14336/AD.2023.0630-1.
    [14] CAZZAGON N, SARCOGNATO S, FLOREANI A, et al. Cholangiocyte senescence in primary sclerosing cholangitis is associated with disease severity and prognosis[J]. JHEP Rep, 2021, 3( 3): 100286. DOI: 10.1016/j.jhepr.2021.100286.
    [15] BARRON-MILLAR B, OGLE L, MELLS G, et al. The serum proteome and ursodeoxycholic acid response in primary biliary cholangitis[J]. Hepatology, 2021, 74( 6): 3269- 3283. DOI: 10.1002/hep.32011.
    [16] SASAKI M, SATO Y, NAKANUMA Y. Increased p16INK4a-expressing senescent bile ductular cells are associated with inadequate response to ursodeoxycholic acid in primary biliary cholangitis[J]. J Autoimmun, 2020, 107: 102377. DOI: 10.1016/j.jaut.2019.102377.
    [17] KYRITSI K, KENNEDY L, MEADOWS V, et al. Mast cells induce ductular reaction mimicking liver injury in mice through mast cell-derived transforming growth factor beta 1 signaling[J]. Hepatology, 2021, 73( 6): 2397- 2410. DOI: 10.1002/hep.31497.
    [18] WAN Y, ZHOU TH, SLEVIN E, et al. Liver-specific deletion of microRNA-34a alleviates ductular reaction and liver fibrosis during experimental cholestasis[J]. FASEB J, 2023, 37( 2): e22731. DOI: 10.1096/fj.202201453R.
    [19] KOSAR K, CORNUET P, SINGH S, et al. WNT7B regulates cholangiocyte proliferation and function during murine cholestasis[J]. Hepatol Commun, 2021, 5( 12): 2019- 2034. DOI: 10.1002/hep4.1784.
    [20] RONCA V, MANCUSO C, MILANI C, et al. Immune system and cholangiocytes: A puzzling affair in primary biliary cholangitis[J]. J Leukoc Biol, 2020, 108( 2): 659- 671. DOI: 10.1002/JLB.5MR0320-200R.
    [21] LAN T, QIAN SJ, TANG CW, et al. Role of immune cells in biliary repair[J]. Front Immunol, 2022, 13: 866040. DOI: 10.3389/fimmu.2022.866040.
    [22] SASAKI M, MIYAKOSHI M, SATO Y, et al. Modulation of the microenvironment by senescent biliary epithelial cells may be involved in the pathogenesis of primary biliary cirrhosis[J]. J Hepatol, 2010, 53( 2): 318- 325. DOI: 10.1016/j.jhep.2010.03.008.
    [23] ZHANG L, PITCHER LE, PRAHALAD V, et al. Targeting cellular senescence with senotherapeutics: Senolytics and senomorphics[J]. FEBS J, 2023, 290( 5): 1362- 1383. DOI: 10.1111/febs.16350.
    [24] WU N, MENG FY, INVERNIZZI P, et al. The secretin/secretin receptor axis modulates liver fibrosis through changes in transforming growth factor-β1 biliary secretion in mice[J]. Hepatology, 2016, 64( 3): 865- 879. DOI: 10.1002/hep.28622.
    [25] FERREIRA-GONZALEZ S, LU WY, RAVEN A, et al. Paracrine cellular senescence exacerbates biliary injury and impairs regeneration[J]. Nat Commun, 2018, 9( 1): 1020. DOI: 10.1038/s41467-018-03299-5.
    [26] KIOURTIS C, TERRADAS-TERRADAS M, GEE LM, et al. Hepatocellular senescence induces multi-organ senescence and dysfunction via TGFβ[J]. Nat Cell Biol, 2024, 26( 12): 2075- 2083. DOI: 10.1038/s41556-024-01543-3.
    [27] YANG Y, WANG JL, WAN JH, et al. PTEN deficiency induces an extrahepatic cholangitis-cholangiocarcinoma continuum via aurora kinase A in mice[J]. J Hepatol, 2024, 81( 1): 120- 134. DOI: 10.1016/j.jhep.2024.02.018.
    [28] SHANG DS, SUN DL, SHI CY, et al. Activation of epidermal growth factor receptor signaling mediates cellular senescence induced by certain pro-inflammatory cytokines[J]. Aging Cell, 2020, 19( 5): e13145. DOI: 10.1111/acel.13145.
    [29] LU XY, LIU L. Genome stability from the perspective of telomere length[J]. Trends Genet, 2024, 40( 2): 175- 186. DOI: 10.1016/j.tig.2023.10.013.
    [30] SHIM HS, IACONELLI J, SHANG XY, et al. TERT activation targets DNA methylation and multiple aging hallmarks[J]. Cell, 2024, 187( 15): 4030- 4042. e 13. DOI: 10.1016/j.cell.2024.05.048.
    [31] JALAN-SAKRIKAR N, ANWAR A, YAQOOB U, et al. Telomere dysfunction promotes cholangiocyte senescence and biliary fibrosis in primary sclerosing cholangitis[J]. JCI Insight, 2023, 8( 20): e170320. DOI: 10.1172/jci.insight.170320.
    [32] YANG L, ZHENG SJ, YANG N, et al. Research progress of inflammatory response and oxidative stress mechanism of cholestatic liver disease and intervention progress of Chinese medicine[J/OL]. China J Chin Med, 1- 10[ 2024-12-29]. http://kns.cnki.net/kcms/detail/41.1411.R.20240929.1140.006.html. http: //kns.cnki.net/kcms/detail/41.1411.R.20240929.1140.006.html

    杨柳, 郑思嘉, 杨念, 等. 胆汁淤积肝病的炎症反应和氧化应激机制及中医药干预研究[J/OL]. 中医学报, 1- 10[ 2024-12-29]. http://kns.cnki.net/kcms/detail/41.1411.R.20240929.1140.006.html. http: //kns.cnki.net/kcms/detail/41.1411.R.20240929.1140.006.html
    [33] von ZGLINICKI T. Oxidative stress and cell senescence as drivers of ageing: Chicken and egg[J]. Ageing Res Rev, 2024, 102: 102558. DOI: 10.1016/j.arr.2024.102558.
    [34] FLOREANI A, GABBIA D, de MARTIN S. Primary biliary cholangitis: Primary autoimmune disease or primary secretory defect[J]. Expert Rev Gastroenterol Hepatol, 2023, 17( 9): 863- 870. DOI: 10.1080/17474124.2023.2242771.
    [35] PRIETO J, BANALES JM, MEDINA JF. Primary biliary cholangitis: Pathogenic mechanisms[J]. Curr Opin Gastroenterol, 2021, 37( 2): 91- 98. DOI: 10.1097/MOG.0000000000000703.
    [36] SASAKI M, SATO Y, NAKANUMA Y. An impaired biliary bicarbonate umbrella may be involved in dysregulated autophagy in primary biliary cholangitis[J]. Lab Invest, 2018, 98( 6): 745- 754. DOI: 10.1038/s41374-018-0045-4.
    [37] LI Q, LIN Y, LIANG GY, et al. Autophagy and senescence: The molecular mechanisms and implications in liver diseases[J]. Int J Mol Sci, 2023, 24( 23): 16880. DOI: 10.3390/ijms242316880.
    [38] SASAKI M, MIYAKOSHI M, SATO Y, et al. Autophagy may precede cellular senescence of bile ductular cells in ductular reaction in primary biliary cirrhosis[J]. Dig Dis Sci, 2012, 57( 3): 660- 666. DOI: 10.1007/s10620-011-1929-y.
    [39] SASAKI M, NAKANUMA Y. Bile acids and deregulated cholangiocyte autophagy in primary biliary cholangitis[J]. Dig Dis, 2017, 35( 3): 210- 216. DOI: 10.1159/000450913.
    [40] ALSURAIH M, O’HARA SP, WOODRUM JE, et al. Genetic or pharmacological reduction of cholangiocyte senescence improves inflammation and fibrosis in the Mdr2-/- mouse[J]. JHEP Rep, 2021, 3( 3): 100250. DOI: 10.1016/j.jhepr.2021.100250.
    [41] MAHONEY SA, VENKATASUBRAMANIAN R, DARRAH MA, et al. Intermittent supplementation with fisetin improves arterial function in old mice by decreasing cellular senescence[J]. Aging Cell, 2024, 23( 3): e14060. DOI: 10.1111/acel.14060.
    [42] KYRITSI K, FRANCIS H, ZHOU TH, et al. Downregulation of p16 decreases biliary damage and liver fibrosis in the Mdr2-/- mouse model of primary sclerosing cholangitis[J]. Gene Expr, 2020, 20( 2): 89- 103. DOI: 10.3727/105221620X15889714507961.
    [43] JONES H, HARGROVE L, KENNEDY L, et al. Inhibition of mast cell-secreted histamine decreases biliary proliferation and fibrosis in primary sclerosing cholangitis Mdr2(-/-) mice[J]. Hepatology, 2016, 64( 4): 1202- 1216. DOI: 10.1002/hep.28704.
    [44] WANG Y, QIU H, CHEN SP, et al. microRNA-7 deficiency ameliorates d-galactose-induced aging in mice by regulating senescence of Kupffer cells[J]. Aging Cell, 2024, 23( 6): e14145. DOI: 10.1111/acel.14145.
    [45] JIA RJ, YANG F, YAN PF, et al. Paricalcitol inhibits oxidative stress-induced cell senescence of the bile duct epithelium dependent on modulating Sirt1 pathway in cholestatic mice[J]. Free Radic Biol Med, 2021, 169: 158- 168. DOI: 10.1016/j.freeradbiomed.2021.04.019.
    [46] KIM JY, KIM SH, SEOK J, et al. Increased PRL-1 in BM-derived MSCs triggers anaerobic metabolism via mitochondria in a cholestatic rat model[J]. Mol Ther Nucleic Acids, 2023, 31: 512- 524. DOI: 10.1016/j.omtn.2023.01.017.
    [47] TORRES G, SALLADAY-PEREZ IA, DHINGRA A, et al. Genetic origins, regulators, and biomarkers of cellular senescence[J]. Trends Genet, 2024, 40( 12): 1018- 1031. DOI: 10.1016/j.tig.2024.08.007.
    [48] MONCSEK A, AL-SURAIH MS, TRUSSONI CE, et al. Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout(Mdr2-/-) mice[J]. Hepatology, 2018, 67( 1): 247- 259. DOI: 10.1002/hep.29464.
    [49] YIN YJ, CHEN HH, WANG YZ, et al. Roles of extracellular vesicles in the aging microenvironment and age-related diseases[J]. J Extracell Vesicles, 2021, 10( 12): e12154. DOI: 10.1002/jev2.12154.
    [50] SURAIH MS AL, TRUSSONI CE, SPLINTER PL, et al. Senescent cholangiocytes release extracellular vesicles that alter target cell phenotype via the epidermal growth factor receptor[J]. Liver Int, 2020, 40( 10): 2455- 2468. DOI: 10.1111/liv.14569.
    [51] RUDNITSKY E, BRAIMAN A, WOLFSON M, et al. Stem cell-derived extracellular vesicles as senotherapeutics[J]. Ageing Res Rev, 2024, 99: 102391. DOI: 10.1016/j.arr.2024.102391.
    [52] CHEN WY, ZHU JQ, LIN FY, et al. Human placenta mesenchymal stem cell-derived exosomes delay H2O2 - induced aging in mouse cholangioids[J]. Stem Cell Res Ther, 2021, 12( 1): 201. DOI: 10.1186/s13287-021-02271-3.
    [53] CHEN LX, ZHOU TH, WHITE T, et al. The apelin-apelin receptor axis triggers cholangiocyte proliferation and liver fibrosis during mouse models of cholestasis[J]. Hepatology, 2021, 73( 6): 2411- 2428. DOI: 10.1002/hep.31545.
    [54] CECI L, FRANCIS H, ZHOU TH, et al. Knockout of the tachykinin receptor 1 in the Mdr2-/-(Abcb4-/-) mouse model of primary sclerosing cholangitis reduces biliary damage and liver fibrosis[J]. Am J Pathol, 2020, 190( 11): 2251- 2266. DOI: 10.1016/j.ajpath.2020.07.007.
    [55] GLASER S, GAUDIO E, RENZI A, et al. Knockout of the neurokinin-1 receptor reduces cholangiocyte proliferation in bile duct-ligated mice[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 301( 2): G297- G305. DOI: 10.1152/ajpgi.00418.2010.
    [56] WAN Y, CECI L, WU N, et al. Knockout of α-calcitonin gene-related peptide attenuates cholestatic liver injury by differentially regulating cellular senescence of hepatic stellate cells and cholangiocytes[J]. Lab Invest, 2019, 99( 6): 764- 776. DOI: 10.1038/s41374-018-0178-5.
    [57] SCHUMACHER JD, GUO GL. Regulation of hepatic stellate cells and fibrogenesis by fibroblast growth factors[J]. Biomed Res Int, 2016, 2016: 8323747. DOI: 10.1155/2016/8323747.
    [58] WU G, YU F, XIAO Z, et al. Hepatitis B virus X protein downregulates expression of the miR-16 family in malignant hepatocytes in vitro[J]. Br J Cancer, 2011, 105( 1): 146- 153. DOI: 10.1038/bjc.2011.190.
    [59] O’BRIEN A, ZHOU TH, WHITE T, et al. FGF1 signaling modulates biliary injury and liver fibrosis in the Mdr2-/- mouse model of primary sclerosing cholangitis[J]. Hepatol Commun, 2022, 6( 7): 1574- 1588. DOI: 10.1002/hep4.1909.
    [60] SASAKI M, SATO Y, NAKANUMA Y. Interferon-induced protein with tetratricopeptide repeats 3 may be a key factor in primary biliary cholangitis[J]. Sci Rep, 2021, 11( 1): 11413. DOI: 10.1038/s41598-021-91016-6.
    [61] ZHANG WT, LI YL, XIN SY, et al. The emerging roles of IFIT3 in antiviral innate immunity and cellular biology[J]. J Med Virol, 2023, 95( 1): e28259. DOI: 10.1002/jmv.28259.
    [62] DONG ZN, LUO YH, YUAN ZC, et al. Cellular senescence and SASP in tumor progression and therapeutic opportunities[J]. Mol Cancer, 2024, 23( 1): 181. DOI: 10.1186/s12943-024-02096-7.
  • 加载中
图(2)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  126
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-19
  • 录用日期:  2024-12-31
  • 出版日期:  2025-08-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回