中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核因子κB信号通路调控铁死亡的机制及在肝脏疾病中的作用

程新月 史文杰 刘熔 禄保平

引用本文:
Citation:

核因子κB信号通路调控铁死亡的机制及在肝脏疾病中的作用

DOI: 10.12449/JCH250835
基金项目: 

河南省中医药科学研究专项课题 (2022ZY1167);

河南省中医药科学研究专项课题 (2024ZY2156);

全国名中医传承工作室建设项目 (National Chinese Medicine Office Human Education Letter [2018] No.119)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:程新月负责撰写论文及绘制图片;史文杰负责课题设计及修改论文;刘熔负责文献检索及整理;禄保平负责拟定写作思路及最后定稿。
详细信息
    通信作者:

    禄保平, lbp1921@sohu.com (ORCID: 0000-0002-3707-2185)

Mechanism of the nuclear factor-kappa B signaling pathway regulating ferroptosis and its role in liver diseases

Research funding: 

The Special Research Project of Traditional Chinese Medicine in Henan Province (2022ZY1167);

The Special Research Project of Traditional Chinese Medicine in Henan Province (2024ZY2156);

National Famous Traditional Chinese Medicine Practitioner Inheritance Workshop Construction Project (National Chinese Medicine Office Human Education Letter [2018] No.119)

More Information
    Corresponding author: LU Baoping, lbp1921@sohu.com (ORCID: 0000-0002-3707-2185)
  • 摘要: 核因子κB(NF-κB)信号通路作为一种经典的炎症反应通路,在多种生理和病理过程中发挥着关键作用。铁死亡是一种新的非凋亡性细胞死亡形式,研究发现NF-κB信号通路与铁死亡之间存在紧密联系,影响着肝脏系统疾病的发生发展过程。因此,靶向NF-κB信号通路调节铁死亡在肝脏系统疾病的治疗中有巨大潜力。本文探讨了NF-κB信号通路对铁死亡过程中脂质代谢、铁离子代谢等关键环节的影响,以及正向或负向调控铁死亡的作用机制。同时,探讨了该信号通路调控铁死亡在肝损伤、非酒精性脂肪性肝病、酒精性肝病和肝细胞癌等肝脏系统疾病中的研究进展,为进一步理解肝脏疾病的发病机制以及开发新的治疗策略提供参考。

     

  • 注: NQO1,NADPH醌氧化还原酶1;MDA,丙二醛;Fe2+,二价铁离子;FPNI,铁转运蛋白1;FTH1,铁蛋白重链1。

    图  1  NF-κB信号通路在铁死亡中的作用

    Figure  1.  The role of the NF-κB signaling pathway in ferroptosis

    表  1  肝疾病中基于NF-κB信号通路的铁死亡调控分子及调控机制

    Table  1.   Regulatory molecules and mechanisms of ferroptosis based on NF-κB signalling pathway in liver diseases

    疾病类型 第一作者
    及年份
    药物靶点 作用机制 NF-κB
    表达
    作用影响 作用结果
    肝损伤 Chen432022 组蛋白H3 NOD2/IκBα/
    NF-κB p65
    激活 Fe2+、ROS↑
    GPX4、GSH↓
    诱导急性肝衰竭肝巨噬细胞铁死亡
    肝损伤 Zhong442021 NF-κB诱导
    激酶NIK
    NIK/IKKα/ROS 激活 ROS↑ 促进肝细胞铁死亡,加重肝损伤
    肝损伤 Tak462024 NEMO NEMO/Gα12/
    GPX4
    抑制 GPX4↑ 保护肝细胞免受内质网应激诱导的
    铁死亡
    肝损伤 Lin472023 Caspase 6 NEMO/RIPK1/
    IκBα
    激活 ASCL4↑GPX4↓ 促进肝细胞铁死亡
    MAFLD Yao502024 牙龈卟啉单
    胞菌
    NF-κB/GPX4/
    SLC7A11
    激活 GPX4、SLC7A11↓ 诱导MAFLD细胞铁死亡
    MAFLD Yu512021 EWCD Nrf2/NF-κB/ROS 抑制 ROS↓ 抑制MAFLD细胞铁死亡
    MAFLD Yuan522023 HMOX1 NF-κB/SLC7A11/
    GPX4
    抑制 SLC7A11、GPX4↑ 抑制铁死亡,缓解非酒精性脂肪性
    肝炎
    ALD Zmijewski55
    2014
    酒精 HAMP mRNA/
    NF-κB/Fe2+
    激活 Fe2+ 促进酒精性肝病细胞铁死亡
    HCC Yao572021 LIFR LIFR/NF-κB/
    LCN2
    激活 Fe2+ 减弱HCC对铁死亡的敏感性
    HCC Sun582024 Bay11-7082 NF-κB/GPX4/
    ROS
    抑制 ROS、MDA、Fe2+ 促进HepG2细胞铁死亡
    HCC Wang592023 阿司匹林 NF-κB/SLC7A11 抑制 SLC7A11↓ 促进HCC细胞铁死亡
    HCC Lin602023 白术内酯Ⅱ TRAF6/NF-κB/
    ROS
    抑制 ROS、MDA↑,GSH、
    SLC7A11、GPX4↓
    促进HCC细胞铁死亡
    HCC Li612024 DDX5 Wnt/β-catenin/
    NIK/p52/RelB
    激活 Nrf2↑ 抑制索拉非尼诱导的HCC细胞铁
    死亡

    注:Gα12,G蛋白亚基α12;Bay11-7082,NF-κB抑制剂;↑,上升或激活;↓,下降或抑制。

    下载: 导出CSV
  • [1] JIANG XJ, STOCKWELL BR, CONRAD M. Ferroptosis: Mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22( 4): 266- 282. DOI: 10.1038/s41580-020-00324-8.
    [2] LAWRENCE T. The nuclear factor NF-kappaB pathway in inflammation[J]. Cold Spring Harb Perspect Biol, 2009, 1( 6): a001651. DOI: 10.1101/cshperspect.a001651.
    [3] LUEDDE T, SCHWABE RF. NF-κB in the liver: Linking injury, fibrosis and hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2011, 8( 2): 108- 118. DOI: 10.1038/nrgastro.2010.213.
    [4] ZHANG Q, LENARDO MJ, BALTIMORE D. 30 years of NF-κB: A blossoming of relevance to human pathobiology[J]. Cell, 2017, 168( 1-2): 37- 57. DOI: 10.1016/j.cell.2016.12.012.
    [5] KAILEH M, SEN R. NF-κB function in B lymphocytes[J]. Immunol Rev, 2012, 246( 1): 254- 271. DOI: 10.1111/j.1600-065X.2012.01106.x.
    [6] KARIN M, BEN-NERIAH Y. Phosphorylation meets ubiquitination: The control of NF-[kappa] B activity[J]. Annu Rev Immunol, 2000, 18: 621- 663. DOI: 10.1146/annurev.immunol.18.1.621.
    [7] GAMBHIR S, VYAS D, HOLLIS M, et al. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies[J]. World J Gastroenterol, 2015, 21( 11): 3174- 3183. DOI: 10.3748/wjg.v21.i11.3174.
    [8] ISRAËL A. The IKK complex, a central regulator of NF-kappaB activation[J]. Cold Spring Harb Perspect Biol, 2010, 2( 3): a000158. DOI: 10.1101/cshperspect.a000158.
    [9] SUN SC. Non-canonical NF-κB signaling pathway[J]. Cell Res, 2011, 21( 1): 71- 85. DOI: 10.1038/cr.2010.177.
    [10] YAN HF, ZOU T, TUO QZ, et al. Ferroptosis: Mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6( 1): 49. DOI: 10.1038/s41392-020-00428-9.
    [11] LIU MR, ZHU WT, PEI DS. System Xc-: A key regulatory target of ferroptosis in cancer[J]. Invest New Drugs, 2021, 39( 4): 1123- 1131. DOI: 10.1007/s10637-021-01070-0.
    [12] LIU J, KANG R, TANG DL. Signaling pathways and defense mechanisms of ferroptosis[J]. FEBS J, 2022, 289( 22): 7038- 7050. DOI: 10.1111/febs.16059.
    [13] CHEN Y, FANG ZM, YI X, et al. The interaction between ferroptosis and inflammatory signaling pathways[J]. Cell Death Dis, 2023, 14( 3): 205. DOI: 10.1038/s41419-023-05716-0.
    [14] LIANG DG, MINIKES AM, JIANG XJ. Ferroptosis at the intersection of lipid metabolism and cellular signaling[J]. Mol Cell, 2022, 82( 12): 2215- 2227. DOI: 10.1016/j.molcel.2022.03.022.
    [15] YAN N, XU ZP, QU CH, et al. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway[J]. Int Immunopharmacol, 2021, 98: 107844. DOI: 10.1016/j.intimp.2021.107844.
    [16] CHEN DD, GENG Y, DENG ZW, et al. Inhibition of TLR4 alleviates heat stroke-induced cardiomyocyte injury by down-regulating inflammation and ferroptosis[J]. Molecules, 2023, 28( 5): 2297. DOI: 10.3390/molecules28052297.
    [17] MIN YQ, LI S, LIU XH, et al. Research advances in the cascade interaction between reactive oxygen species/reactive nitrogen species and the NF-κB signaling pathway in liver fibrosis[J]. J Clin Hepatol, 2023, 39( 6): 1454- 1460. DOI: 10.3969/j.issn.1001-5256.2023.06.031.

    闵远骞, 李姗, 刘湘花, 等. 活性氧/活性氮与NF-κB信号通路级联交互在肝纤维化中的作用[J]. 临床肝胆病杂志, 2023, 39( 6): 1454- 1460. DOI: 10.3969/j.issn.1001-5256.2023.06.031.
    [18] YANG L, WANG H, YANG X, et al. Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms[J]. Signal Transduct Target Ther, 2020, 5( 1): 138. DOI: 10.1038/s41392-020-00253-0.
    [19] ZHANG CG. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control[J]. Protein Cell, 2014, 5( 10): 750- 760. DOI: 10.1007/s13238-014-0083-7.
    [20] CHEUNG JCT, DENG GZ, WONG N, et al. More than a duologue: In-depth insights into epitranscriptomics and ferroptosis[J]. Front Cell Dev Biol, 2022, 10: 982606. DOI: 10.3389/fcell.2022.982606.
    [21] PERSICHINI T, MAIO N, DI PATTI MCB, et al. Interleukin-1β induces ceruloplasmin and ferroportin-1 gene expression via MAP kinases and C/EBPβ, AP-1, and NF-κB activation[J]. Neurosci Lett, 2010, 484( 2): 133- 138. DOI: 10.1016/j.neulet.2010.08.034.
    [22] PHAM CG, BUBICI C, ZAZZERONI F, et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species[J]. Cell, 2004, 119( 4): 529- 542. DOI: 10.1016/j.cell.2004.10.017.
    [23] CHENG K, HUANG YQ, WANG CF. 1,25(OH)2D3 inhibited ferroptosis in zebrafish liver cells(ZFL) by regulating Keap1-Nrf2-GPx4 and NF-κB-hepcidin axis[J]. Int J Mol Sci, 2021, 22( 21): 11334. DOI: 10.3390/ijms222111334.
    [24] BEN-NERIAH Y, KARIN M. Inflammation meets cancer, with NF-κB as the matchmaker[J]. Nat Immunol, 2011, 12( 8): 715- 723. DOI: 10.1038/ni.2060.
    [25] GAO JL, LUO T, WANG JK. Gene interfered-ferroptosis therapy for cancers[J]. Nat Commun, 2021, 12( 1): 5311. DOI: 10.1038/s41467-021-25632-1.
    [26] ZHANG SW, LI D, HE J, et al. Mechanism of ferroptosis mediated by the bromodomain protein subfamily 4/nuclear factor-kappa B signaling pathway in chemotherapy resistance of triple-negative breast cancer[J]. J Chongqing Med Univ, 2024, 49( 7): 844- 852. DOI: 10.13406/j.cnki.cyxb.003536.

    张硕稳, 李丹, 贺静, 等. BRD4/NF-κB信号通路介导的铁死亡参与三阴性乳腺癌化疗耐药的机制[J]. 重庆医科大学学报, 2024, 49( 7): 844- 852. DOI: 10.13406/j.cnki.cyxb.003536.
    [27] KUNDU S, N S, T DAK. Discovery of pharmacological agents for triple-negative breast cancer(TNBC): Molecular docking and molecular dynamic simulation studies on 5-lipoxygenase(5-LOX) and nuclear factor kappa B(NF-κB)[J]. J Biomol Struct Dyn, 2024, 42( 17): 9076- 9089. DOI: 10.1080/07391102.2023.2250449.
    [28] WANG JG, LI Y, ZHANG J, et al. Isoliquiritin modulates ferroptosis via NF-κB signaling inhibition and alleviates doxorubicin resistance in breast cancer[J]. Immunopharmacol Immunotoxicol, 2023, 45( 4): 443- 454. DOI: 10.1080/08923973.2023.2165943.
    [29] DAIMON T, BHATTACHARYA A, WANG KY, et al. MUC1-C is a target of salinomycin in inducing ferroptosis of cancer stem cells[J]. Cell Death Discov, 2024, 10( 1): 9. DOI: 10.1038/s41420-023-01772-9.
    [30] LAN YF, YANG T, YUE Q, et al. IRP1 mediated ferroptosis reverses temozolomide resistance in glioblastoma via affecting LCN2/FPN1 signaling axis depended on NFKB2[J]. iScience, 2023, 26( 8): 107377. DOI: 10.1016/j.isci.2023.107377.
    [31] CHEN JS, CHEN PH, SONG YJ, et al. STING upregulation mediates ferroptosis and inflammatory response in lupus nephritis by upregulating TBK1 and activating NF-κB signal pathway[J]. J Biosci, 2024, 49: 9.
    [32] FANG WL, SONG X, LI HL, et al. Wnt/β-catenin signaling inhibits oxidative stress-induced ferroptosis to improve interstitial cystitis/bladder pain syndrome by reducing NF-κB[J]. Biochim Biophys Acta Mol Cell Res, 2024, 1871( 7): 119766. DOI: 10.1016/j.bbamcr.2024.119766.
    [33] DODSON M, CASTRO-PORTUGUEZ R, ZHANG DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J]. Redox Biol, 2019, 23: 101107. DOI: 10.1016/j.redox.2019.101107.
    [34] YANG HR, WU SN, GAO Q. Dexmedetomidine alleviates ferroptosis in rat cerebral ischemia/reperfusion injury by inhibiting the Nrf2 pathway[J]. Chin J Clin Pharmacol Ther, 2025, 30( 7): 921- 928. DOI: 10.12092/j.issn.1009-2501.2025.07.006.

    杨焕然, 吴胜男, 高琴. 右美托咪定抑制Nrf2通路减轻大鼠脑缺血/再灌注损伤铁死亡[J]. 中国临床药理学与治疗学, 2025, 30( 7): 921- 928. DOI: 10.12092/j.issn.1009-2501.2025.07.006.
    [35] SIVANDZADE F, PRASAD S, BHALERAO A, et al. NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches[J]. Redox Biol, 2019, 21: 101059. DOI: 10.1016/j.redox.2018.11.017.
    [36] GAO JM, MA CJ, XIA DY, et al. Icariside II preconditioning evokes robust neuroprotection against ischaemic stroke, by targeting Nrf2 and the OXPHOS/NF-κB/ferroptosis pathway[J]. Br J Pharmacol, 2023, 180( 3): 308- 329. DOI: 10.1111/bph.15961.
    [37] ZHU KY, ZHU X, LIU SQ, et al. Glycyrrhizin attenuates hypoxic-ischemic brain damage by inhibiting ferroptosis and neuroinflammation in neonatal rats via the HMGB1/GPX4 pathway[J]. Oxid Med Cell Longev, 2022, 2022: 8438528. DOI: 10.1155/2022/8438528.
    [38] GAO YL, ZHANG HJ, WANG JW, et al. Annexin A5 ameliorates traumatic brain injury-induced neuroinflammation and neuronal ferroptosis by modulating the NF-κB/HMGB1 and Nrf2/HO-1 pathways[J]. Int Immunopharmacol, 2023, 114: 109619. DOI: 10.1016/j.intimp.2022.109619.
    [39] GUO SL, LEI Q, GUO HN, et al. Edaravone attenuates aβ 1-42-induced inflammatory damage and ferroptosis in HT22 cells[J]. Neurochem Res, 2023, 48( 2): 570- 578. DOI: 10.1007/s11064-022-03782-y.
    [40] LI SB, HE YP, CHEN KX, et al. RSL3 drives ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma[J]. Oxid Med Cell Longev, 2021, 2021: 2915019. DOI: 10.1155/2021/2915019.
    [41] ARAUZ J, RAMOS-TOVAR E, MURIEL P. Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside[J]. Ann Hepatol, 2016, 15( 2): 160- 173. DOI: 10.5604/16652681.1193701.
    [42] GIRARDIN SE, BONECA IG, VIALA J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide(MDP) detection[J]. J Biol Chem, 2003, 278( 11): 8869- 8872. DOI: 10.1074/jbc.C200651200.
    [43] CHEN Q, ZHANG QQ, CAO P, et al. NOD2-mediated HDAC6/NF-κB signalling pathway regulates ferroptosis induced by extracellular histone H3 in acute liver failure[J]. J Cell Mol Med, 2022, 26( 21): 5528- 5538. DOI: 10.1111/jcmm.17582.
    [44] ZHONG X, ZHANG ZG, SHEN H, et al. Hepatic NF-κB-inducing kinase and inhibitor of NF-κB kinase subunit α promote liver oxidative stress, ferroptosis, and liver injury[J]. Hepatol Commun, 2021, 5( 10): 1704- 1720. DOI: 10.1002/hep4.1757.
    [45] LUEDDE T, BERAZA N, KOTSIKORIS V, et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma[J]. Cancer Cell, 2007, 11( 2): 119- 132. DOI: 10.1016/j.ccr.2006.12.016.
    [46] TAK J, JOO MS, KIM YS, et al. Dual regulation of NEMO by Nrf2 and miR-125a inhibits ferroptosis and protects liver from endoplasmic reticulum stress-induced injury[J]. Theranostics, 2024, 14( 5): 1841- 1859. DOI: 10.7150/thno.89703.
    [47] LIN YB, SHENG MW, QIN H, et al. Caspase 6 promotes innate immune activation by functional crosstalk between RIPK1-IκBα axis in liver inflammation[J]. Cell Commun Signal, 2023, 21( 1): 282. DOI: 10.1186/s12964-023-01287-x.
    [48] GUO XY, YIN XZ, LIU ZJ, et al. Non-alcoholic fatty liver disease(NAFLD) pathogenesis and natural products for prevention and treatment[J]. Int J Mol Sci, 2022, 23( 24): 15489. DOI: 10.3390/ijms232415489.
    [49] ZHANG H, ZHANG EX, HU HB. Role of ferroptosis in non-alcoholic fatty liver disease and its implications for therapeutic strategies[J]. Biomedicines, 2021, 9( 11): 1660. DOI: 10.3390/biomedicines9111660.
    [50] YAO C, LAN DM, LI X, et al. Porphyromonas gingivalis triggers inflammation in hepatocyte depend on ferroptosis via activating the NF-κB signaling pathway[J]. Oral Dis, 2024, 30( 3): 1680- 1694. DOI: 10.1111/odi.14537.
    [51] YU LD, HE MY, LIU SH, et al. Fluorescent egg white-based carbon dots as a high-sensitivity iron Chelator for the therapy of nonalcoholic fatty liver disease by iron overload in zebrafish[J]. ACS Appl Mater Interfaces, 2021, 13( 46): 54677- 54689. DOI: 10.1021/acsami.1c14674.
    [52] YUAN XW, LI L, ZHANG Y, et al. Heme oxygenase 1 alleviates nonalcoholic steatohepatitis by suppressing hepatic ferroptosis[J]. Lipids Health Dis, 2023, 22( 1): 99. DOI: 10.1186/s12944-023-01855-7.
    [53] CHEN LJ, ZHOU HJ, CHENG ZY, et al. Role of ferroptosis in ALD: Focusing on hepcidin and besides hepcidin[J]. Curr Med Chem, 2024. DOI: 10.2174/0109298673317526240924050651.
    [54] WU XG, YUNG LM, CHENG WH, et al. Hepcidin regulation by BMP signaling in macrophages is lipopolysaccharide dependent[J]. PLoS One, 2012, 7( 9): e44622. DOI: 10.1371/journal.pone.0044622.
    [55] ZMIJEWSKI E, LU SZ, HARRISON-FINDIK DD. TLR4 signaling and the inhibition of liver hepcidin expression by alcohol[J]. World J Gastroenterol, 2014, 20( 34): 12161- 12170. DOI: 10.3748/wjg.v20.i34.12161.
    [56] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71( 3): 209- 249. DOI: 10.3322/caac.21660.
    [57] YAO F, DENG YL, ZHAO Y, et al. A targetable LIFR-NF-κB-LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis[J]. Nat Commun, 2021, 12( 1): 7333. DOI: 10.1038/s41467-021-27452-9.
    [58] SUN YW, HUANG D, LI JZ, et al. Inhibition of STAT3-NF-κB pathway facilitates SSPH I-induced ferroptosis in HepG2 cells[J]. Med Oncol, 2024, 41( 7): 184. DOI: 10.1007/s12032-024-02425-2.
    [59] WANG YF, FENG JY, ZHAO LN, et al. Aspirin triggers ferroptosis in hepatocellular carcinoma cells through restricting NF-κB p65-activated SLC7A11 transcription[J]. Acta Pharmacol Sin, 2023, 44( 8): 1712- 1724. DOI: 10.1038/s41401-023-01062-1.
    [60] LIN YJ, CHEN K, ZHU M, et al. Atractylenolide II regulates the proliferation, ferroptosis, and immune escape of hepatocellular carcinoma cells by inactivating the TRAF6/NF-κB pathway[J]. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397( 10): 7697- 7710. DOI: 10.1007/s00210-024-03046-2.
    [61] LI ZL, KIM W, UTTURKAR S, et al. DDX5 deficiency drives non-canonical NF-κB activation and NRF2 expression, influencing sorafenib response and hepatocellular carcinoma progression[J]. Cell Death Dis, 2024, 15( 8): 583. DOI: 10.1038/s41419-024-06977-z.
    [62] MU M, HUANG CX, QU C, et al. Targeting ferroptosis-elicited inflammation suppresses hepatocellular carcinoma metastasis and enhances sorafenib efficacy[J]. Cancer Res, 2024, 84( 6): 841- 854. DOI: 10.1158/0008-5472.CAN-23-1796.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  177
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-25
  • 录用日期:  2025-01-07
  • 出版日期:  2025-08-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回