中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

诱导铁死亡:逆转胰腺癌对吉西他滨化疗耐药性的新策略

肖麟 郑楷炼 张佳鑫 张乐水 金钢

引用本文:
Citation:

诱导铁死亡:逆转胰腺癌对吉西他滨化疗耐药性的新策略

DOI: 10.12449/JCH250737
基金项目: 

国家自然科学基金面上项目 (82172712);

海军军医大学校级基础医学研究课题面上孵化项目 (2022MS013)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:肖麟负责拟定写作思路,绘制图片和论文撰写;金钢、郑楷炼负责课题设计;张佳鑫、张乐水负责文献收集整理;郑楷炼负责指导修改论文并最终定稿。
详细信息
    通信作者:

    郑楷炼, zhengkl828@126.com (ORCID: 0000-0002-7341-0639)

Inducing ferroptosis:A novel strategy to reverse gemcitabine resistance in pancreatic cancer

Research funding: 

General Project of National Natural Science Foundation of China (82172712);

General Incubation Program of Basic Medical Research of Naval Medical University (2022MS013)

More Information
    Corresponding author: ZHENG Kailian, zhengkl828@126.com (ORCID: 0000-0002-7341-0639)
  • 摘要:

    胰腺癌是一种高度恶性的消化系统肿瘤,患者5年生存率远低于其他恶性肿瘤。吉西他滨(GEM)作为胰腺癌的主要化疗药物,其疗效常受限于肿瘤的化疗耐药性。本文介绍了胰腺癌中存在的细胞内源性和非细胞自主机制两种GEM耐药机制,归纳了通过调节多不饱和脂肪酸过氧化、铁代谢调控和抗氧化系统诱导细胞铁死亡,可以增强胰腺癌细胞对GEM的敏感性,旨在深入分析铁死亡与GEM耐药机制的关系,并为胰腺癌的临床治疗提出新的方向。

     

  • 注: SLC38A5,溶质载体家族35成员5;Glutamine,谷氨酰胺;FBW7,F框/WD重复结构域蛋白7;NR4A1,核受体亚家族4A组;FAM60A,序列相似度60家族成员A;PPAR,过氧化物酶体增殖物激活受体;ACSL4,长链脂酰辅酶A连接酶4;ARF6,ADP核糖基化因子6;NF2,神经纤维蛋白2;BUB1,苯并咪唑出芽抑制解除同源物蛋白1;MOB1,Mps-结合者激酶激活因子样1。

    图  1  PUFA过氧化调节通路

    Figure  1.  Regulation pathway of PUFA peroxidation

    注: FTH1,铁蛋白重链多肽1;TF,转铁蛋白;TFR1,转铁蛋白受体1;Ferritin,铁蛋白;Labile Iron Pool,不稳定铁库;CBR1,碳酮还原酶1;Chrysin,白杨素。

    图  2  铁代谢调节通路

    Figure  2.  Regulation pathways of iron metabolism

    注: DNMT3B,DNA甲基转移酶3B;SLC7A11,溶质载体家族7成员11;CPT1B,肉碱棕榈酰转移酶1(CPT1)家族亚型;SMAD4,SMAD家族成员4;lncRNA MACC1-AS1,MACC1反义RNA1;STK33,丝氨酸/苏氨酸激酶33;HSPA5,热休克蛋白家族A成员5;GDMCN2,吉西他滨-DVDMS@金属有机框架@共价有机框架-NRP2抗体;ARID3A,AT丰富结构域相互作用蛋白3A。

    图  3  抗氧化系统调节通路

    Figure  3.  Regulation pathways of antioxidant system

  • [1] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71( 3): 209- 249. DOI: 10.3322/caac.21660.
    [2] NEOPTOLEMOS JP, KLEEFF J, MICHL P, et al. Therapeutic developments in pancreatic cancer: Current and future perspectives[J]. Nat Rev Gastroenterol Hepatol, 2018, 15( 6): 333- 348. DOI: 10.1038/s41575-018-0005-x.
    [3] JIANG ML, QIAO M, ZHAO CL, et al. Targeting ferroptosis for cancer therapy: Exploring novel strategies from its mechanisms and role in cancers[J]. Transl Lung Cancer Res, 2020, 9( 4): 1569- 1584. DOI: 10.21037/tlcr-20-341.
    [4] LEI G, ZHUANG L, GAN BY. Targeting ferroptosis as a vulnerability in cancer[J]. Nat Rev Cancer, 2022, 22( 7): 381- 396. DOI: 10.1038/s41568-022-00459-0.
    [5] DIXON SJ, LEMBERG KM, LAMPRECHT MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149( 5): 1060- 1072. DOI: 10.1016/j.cell.2012.03.042.
    [6] YANG WS, STOCKWELL BR. Ferroptosis: Death by lipid peroxidation[J]. Trends Cell Biol, 2016, 26( 3): 165- 176. DOI: 10.1016/j.tcb.2015.10.014.
    [7] WANG YM, WU XR, REN Z, et al. Overcoming cancer chemotherapy resistance by the induction of ferroptosis[J]. Drug Resist Updat, 2023, 66: 100916. DOI: 10.1016/j.drup.2022.100916.
    [8] SPRINGFELD C, JÄGER D, BÜCHLER MW, et al. Chemotherapy for pancreatic cancer[J]. Presse Med, 2019, 48( 3 Pt 2): e159- e174. DOI: 10.1016/j.lpm.2019.02.025.
    [9] WU S, REN JQ, WU HX, et al. Drug resistance factors in postoperative gemcitabine chemotherapy after radical resection of pancreatic cancer[J]. Chin J Dig Surg, 2023, 22( 5): 616- 622. DOI: 10.3760/cma.j.cn115610-20230323-00125.

    武帅, 任加强, 吴含雪, 等. 胰腺癌根治性切除术后吉西他滨化疗方案耐药因素分析[J]. 中华消化外科杂志, 2023, 22( 5): 616- 622. DOI: 10.3760/cma.j.cn115610-20230323-00125.
    [10] von HOFF DD, ERVIN T, ARENA FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine[J]. N Engl J Med, 2013, 369( 18): 1691- 1703. DOI: 10.1056/NEJMoa1304369.
    [11] BURRIS HA 3rd, MOORE MJ, ANDERSEN J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial[J]. J Clin Oncol, 1997, 15( 6): 2403- 2413. DOI: 10.1200/JCO.1997.15.6.2403.
    [12] BEUTEL AK, HALBROOK CJ. Barriers and opportunities for gemcitabine in pancreatic cancer therapy[J]. Am J Physiol Cell Physiol, 2023, 324( 2): C540- C552. DOI: 10.1152/ajpcell.00331.2022.
    [13] BADGLEY MA, KREMER DM, CARLO MAURER H, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice[J]. Science, 2020, 368( 6486): 85- 89. DOI: 10.1126/science.aaw9872.
    [14] SUDA A, UMARU BA, YAMAMOTO Y, et al. Polyunsaturated fatty acids-induced ferroptosis suppresses pancreatic cancer growth[J]. Sci Rep, 2024, 14( 1): 4409. DOI: 10.1038/s41598-024-55050-4.
    [15] DOLL S, PRONETH B, TYURINA YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13( 1): 91- 98. DOI: 10.1038/nchembio.2239.
    [16] DIXON SJ, WINTER GE, MUSAVI LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10( 7): 1604- 1609. DOI: 10.1021/acschembio.5b00245.
    [17] YE Z, HU QS, ZHUO QF, et al. Abrogation of ARF6 promotes RSL3-induced ferroptosis and mitigates gemcitabine resistance in pancreatic cancer cells[J]. Am J Cancer Res, 2020, 10( 4): 1182- 1193.
    [18] WU J, MINIKES AM, GAO MH, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling[J]. Nature, 2019, 572( 7769): 402- 406. DOI: 10.1038/s41586-019-1426-6.
    [19] WANG WM, ZHOU X, KONG LM, et al. BUB1 promotes gemcitabine resistance in pancreatic cancer cells by inhibiting ferroptosis[J]. Cancers(Basel), 2024, 16( 8): 1540. DOI: 10.3390/cancers16081540.
    [20] PAN H, SUN Y, QIAN LH, et al. A nutrient-deficient microenvironment facilitates ferroptosis resistance via the FAM60A-PPAR axis in pancreatic ductal adenocarcinoma[J]. Research(Wash D C), 2024, 7: 0300. DOI: 10.34133/research.0300.
    [21] TESFAY L, PAUL BT, KONSTORUM A, et al. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death[J]. Cancer Res, 2019, 79( 20): 5355- 5366. DOI: 10.1158/0008-5472.CAN-19-0369.
    [22] KIM MJ, KIM HS, KANG HW, et al. SLC38A5 modulates ferroptosis to overcome gemcitabine resistance in pancreatic cancer[J]. Cells, 2023, 12( 20): 2509. DOI: 10.3390/cells12202509.
    [23] YI JM, ZHU JJ, WU J, et al. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis[J]. Proc Natl Acad Sci USA, 2020, 117( 49): 31189- 31197. DOI: 10.1073/pnas.2017152117.
    [24] YE Z, ZHUO QF, HU QS, et al. FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells[J]. Redox Biol, 2021, 38: 101807. DOI: 10.1016/j.redox.2020.101807.
    [25] GAO MH, MONIAN P, PAN QH, et al. Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26( 9): 1021- 1032. DOI: 10.1038/cr.2016.95.
    [26] HOU W, XIE YC, SONG XX, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12( 8): 1425- 1428. DOI: 10.1080/15548627.2016.1187366.
    [27] ZHOU L, YANG C, ZHONG WL, et al. Chrysin induces autophagy-dependent ferroptosis to increase chemosensitivity to gemcitabine by targeting CBR1 in pancreatic cancer cells[J]. Biochem Pharmacol, 2021, 193: 114813. DOI: 10.1016/j.bcp.2021.114813.
    [28] DODSON M, CASTRO-PORTUGUEZ R, ZHANG DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J]. Redox Biol, 2019, 23: 101107. DOI: 10.1016/j.redox.2019.101107.
    [29] TUERHONG A, XU J, WANG W, et al. CPT1B maintains redox homeostasis and inhibits ferroptosis to induce gemcitabine resistance via the KEAP1/NRF2 axis in pancreatic cancer[J]. Surgery, 2024, 175( 5): 1264- 1275. DOI: 10.1016/j.surg.2023.12.019.
    [30] LUO ZY, ZHENG QF, YE SZ, et al. HMGA2 alleviates ferroptosis by promoting GPX4 expression in pancreatic cancer cells[J]. Cell Death Dis, 2024, 15( 3): 220. DOI: 10.1038/s41419-024-06592-y.
    [31] ZHU JY, YU ZH, WANG XG, et al. LncRNA MACC1-AS1 induces gemcitabine resistance in pancreatic cancer cells through suppressing ferroptosis[J]. Cell Death Discov, 2024, 10( 1): 101. DOI: 10.1038/s41420-024-01866-y.
    [32] NIU ZY, WANG MY, ZHOU L, et al. Elevated GRP78 expression is associated with poor prognosis in patients with pancreatic cancer[J]. Sci Rep, 2015, 5: 16067. DOI: 10.1038/srep16067.
    [33] ZHU S, ZHANG QH, SUN XF, et al. HSPA5 regulates ferroptotic cell death in cancer cells[J]. Cancer Res, 2017, 77( 8): 2064- 2077. DOI: 10.1158/0008-5472.CAN-16-1979.
    [34] SERRANO-GOMEZ SJ, MAZIVEYI M, ALAHARI SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications[J]. Mol Cancer, 2016, 15: 18. DOI: 10.1186/s12943-016-0502-x.
    [35] LIAO TT, YANG MH. Revisiting epithelial-mesenchymal transition in cancer metastasis: The connection between epithelial plasticity and stemness[J]. Mol Oncol, 2017, 11( 7): 792- 804. DOI: 10.1002/1878-0261.12096.
    [36] FISCHER KR, DURRANS A, LEE S, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance[J]. Nature, 2015, 527( 7579): 472- 476. DOI: 10.1038/nature15748.
    [37] REN YQ, MAO XR, XU H, et al. Ferroptosis and EMT: Key targets for combating cancer progression and therapy resistance[J]. Cell Mol Life Sci, 2023, 80( 9): 263. DOI: 10.1007/s00018-023-04907-4.
    [38] ZHAO M, MISHRA L, DENG CX. The role of TGF-β/SMAD4 signaling in cancer[J]. Int J Biol Sci, 2018, 14( 2): 111- 123. DOI: 10.7150/ijbs.23230.
    [39] XIA X, WU W, HUANG C, et al. SMAD4 and its role in pancreatic cancer[J]. Tumour Biol, 2015, 36( 1): 111- 119. DOI: 10.1007/s13277-014-2883-z.
    [40] CHEN HD, YE Z, HU HF, et al. SMAD4 endows TGF-β1-induced highly invasive tumor cells with ferroptosis vulnerability in pancreatic cancer[J]. Acta Pharmacol Sin, 2024, 45( 4): 844- 856. DOI: 10.1038/s41401-023-01199-z.
    [41] MAO XQ, XU J, WANG W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives[J]. Mol Cancer, 2021, 20( 1): 131. DOI: 10.1186/s12943-021-01428-1.
    [42] MAO XQ, XU J, XIAO MM, et al. ARID3A enhances chemoresistance of pancreatic cancer via inhibiting PTEN-induced ferroptosis[J]. Redox Biol, 2024, 73: 103200. DOI: 10.1016/j.redox.2024.103200.
    [43] KAMISAWA T, WOOD LD, ITOI T, et al. Pancreatic cancer[J]. Lancet, 2016, 388( 10039): 73- 85. DOI: 10.1016/s0140-6736(16)00141-0.
    [44] LIU XX, HUANG ZH, CHEN QZ, et al. Hypoxia-induced epigenetic regulation of miR-485-3p promotes stemness and chemoresistance in pancreatic ductal adenocarcinoma via SLC7A11-mediated ferroptosis[J]. Cell Death Discov, 2024, 10( 1): 262. DOI: 10.1038/s41420-024-02035-x.
    [45] LI QY, LIU XW, XIANG FY, et al. Research progress of SLC7A11 in pancreatic cancer[J]. Chin Bull Life Sci, 2022, 34( 7): 815- 820. DOI: 10.13376/j.cbls/2022089.

    李青芸, 刘晓雯, 向凤怡, 等. SLC7A11在胰腺癌中的研究进展[J]. 生命科学, 2022, 34( 7): 815- 820. DOI: 10.13376/j.cbls/2022089.
    [46] XU R, YANG J, QIAN Y, et al. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF[J]. Nanoscale Horiz, 2021, 6( 4): 348- 356. DOI: 10.1039/d0nh00674b.
    [47] ZHAO ZY, WU YJ, LIANG XC, et al. Sonodynamic therapy of NRP2 monoclonal antibody-guided MOFs@COF targeted disruption of mitochondrial and endoplasmic reticulum homeostasis to induce autophagy-dependent ferroptosis[J]. Adv Sci(Weinh), 2023, 10( 30): e2303872. DOI: 10.1002/advs.202303872.
    [48] WEI WH. Mechanism of iron death induced by gemcitabine combined with cisplatin in pancreatic cancer[D]. Wuhan: Wuhan University, 2022.

    魏婉慧. 吉西他滨与顺铂联用诱导胰腺癌铁死亡的机制研究[D]. 武汉: 武汉大学, 2022.
  • 加载中
图(3)
计量
  • 文章访问数:  472
  • HTML全文浏览量:  171
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-07
  • 录用日期:  2024-12-04
  • 出版日期:  2025-07-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回