中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物钟基因在肝癌发生发展与治疗中的研究进展

孔亚楠 刘江凯

引用本文:
Citation:

生物钟基因在肝癌发生发展与治疗中的研究进展

DOI: 10.12449/JCH250731
基金项目: 

河南省中医管理局国家中医临床研究基地科研专项 (2021JDZY003);

河南省特色骨干学科中医学学科建设项目 (STG-ZYX04-202133);

河南省卫生健康委河南省中医药科学研究专项课题 (2023ZY2007)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:孔亚楠负责查阅文献,撰写论文;刘江凯负责指导撰写文章并最后定稿。
详细信息
    通信作者:

    刘江凯, 13592553982@126.com (ORCID: 0000-0002-1529-5089)

Research advances in circadian clock genes in the development, progression, and treatment of liver cancer

Research funding: 

Scientific Research Project of National Clinical Research Base of Traditional Chinese Medicine of Henan Provincial Administration (2021JDZY003);

Construction Project of Traditional Chinese Medicine in Henan Province (STG-ZYX04-202133);

Henan Provincial Health Commission Special Project of Traditional Chinese Medicine Scientific Research (2023ZY2007)

More Information
  • 摘要: 原发性肝癌是最常见的消化系统恶性肿瘤之一,其发病率和病死率逐年上升。近年研究发现,生物钟基因失调与肝癌的发生发展密切相关,为肝癌的预防、诊疗及预后提供了新的视角。此外,靶向生物钟基因在治疗癌症方面也显示出一定的临床应用潜力。本文系统阐述了生物钟基因在肝癌发病机制、防治和预后等方面的最新研究进展,以期为肝癌临床诊疗提供新思路。

     

  • 表  1  生物钟基因在肝癌发生发展中的作用机制

    Table  1.   The mechanism of clock genes in the tumorigenesis and development of hepatocellular carcinoma

    生物钟基因 主要作用 与肝癌的关系
    CLOCK 与BMAL1结合为异源二聚体,激活Cry、Per蛋白 CLOCK过表达促进细胞增殖,CLOCK过表达与预
    后负相关
    BMAL1 与CLOCK/NPAS2结合为异源二聚体,激活Cry、
    Per蛋白
    BMAL1敲除可扰乱细胞周期,BMAL1低表达与预
    后正相关
    Per(Per1、Per2、Per3) 与Cry形成异源二聚体,抑制CLOCK-BMAL1 Per2低表达/敲除可激活癌基因c-MYC和CCNB1、
    促进细胞增殖,Per2高DNA甲基化与预后正相关
    Cry(Cry1、Cry2) 与Per形成异源二聚体,抑制CLOCK-BMAL1 Cry低表达/敲除可激活p53、细胞增殖和凋亡抑
    制,Cry2低表达与预后正相关
    NPAS2 与BMAL1结合为异源二聚体,激活Cry、Per蛋白 NPAS2单核苷酸多态性与预后正相关
    REV-ERB 与RORE位点结合,抑制BMAL1转录 REV-ERB过表达抑制细胞增殖
    TIMELESS 参与Per-Cry异二聚体形成 TIMELESS过表达可抑制p53、促进糖酵解、抑制
    氧化磷酸化,促进细胞增殖
    下载: 导出CSV
  • [1] JIANG SA, LU H, PAN YW, et al. Characterization of the distinct immune microenvironments between hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Cancer Lett, 2024, 588: 216799. DOI: 10.1016/j.canlet.2024.216799.
    [2] BARATI S, SAFFAR H, MEHRABADI S, et al. The circadian clock as a potential biomarker and therapeutic target in gastrointestinal cancers[J]. Curr Pharm Des, 2024, 30( 23): 1804- 1811. DOI: 10.2174/0113816128302762240515054444.
    [3] DELBÈS AS, QUIÑONES M, GOBET C, et al. Mice with humanized livers reveal the role of hepatocyte clocks in rhythmic behavior[J]. Sci Adv, 2023, 9( 20): eadf2982. DOI: 10.1126/sciadv.adf2982.
    [4] PADILLA J, OSMAN NM, BISSIG-CHOISAT B, et al. Circadian dysfunction induces NAFLD-related human liver cancer in a mouse model[J]. J Hepatol, 2024, 80( 2): 282- 292. DOI: 10.1016/j.jhep.2023.10.018.
    [5] LI SJ, SHUI K, ZHANG Y, et al. CGDB a database of circadian genes in eukaryotes[J]. Nucleic Acids Res, 2017, 45( D1): D397- D403. DOI: 10.1093/nar/gkw1028.
    [6] ZHANG C, MIAO JR, FAN X. The role of circadian clock-controlled mitochondrial dynamics in nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2024, 40( 8): 1670- 1676. DOI: 10.12449/JCH240826.

    张策, 苗嘉芮, 樊旭. 生物钟调控的线粒体动力学在非酒精性脂肪性肝病中的作用[J]. 临床肝胆病杂志, 2024, 40( 8): 1670- 1676. DOI: 10.12449/JCH240826.
    [7] CELA O, SCRIMA R, PACELLI C, et al. Autonomous oscillatory mitochondrial respiratory activity: Results of a systematic analysis show heterogeneity in different in vitro-synchronized cancer cells[J]. Int J Mol Sci, 2024, 25( 14): 7797. DOI: 10.3390/ijms25147797.
    [8] DANIELS LJ, KAY D, MARJOT T, et al. Circadian regulation of liver metabolism: Experimental approaches in human, rodent, and cellular models[J]. Am J Physiol Cell Physiol, 2023, 325( 5): C1158- C1177. DOI: 10.1152/ajpcell.00551.2022.
    [9] CHEN SY, ZHANG WX, LI X, et al. DNA polymerase beta connects tumorigenicity with the circadian clock in liver cancer through the epigenetic demethylation of Per1[J]. Cell Death Dis, 2024, 15( 1): 78. DOI: 10.1038/s41419-024-06462-7.
    [10] SINGH A, ANJUM B, NAZ Q, et al. Night shift-induced circadian disruption: Links to initiation of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and risk of hepatic cancer[J]. Hepatoma Res, 2024: 2394- 5079.2024.88. DOI: 10.20517/2394-5079.2024.88.
    [11] YE ZY, DU Y, YU WG, et al. Construction of a circadian rhythm-relevant gene signature for hepatocellular carcinoma prognosis, immunotherapy and chemosensitivity prediction[J]. Heliyon, 2024, 10( 13): e33682. DOI: 10.1016/j.heliyon.2024.e33682.
    [12] de MARTINO M, RATHMELL JC, GALLUZZI L, et al. Cancer cell metabolism and antitumour immunity[J]. Nat Rev Immunol, 2024, 24( 9): 654- 669. DOI: 10.1038/s41577-024-01026-4.
    [13] ZHAO BM, NEPOVIMOVA E, WU QH. The role of circadian rhythm regulator PERs in oxidative stress, immunity, and cancer development[J]. Cell Commun Signal, 2025, 23( 1): 30. DOI: 10.1186/s12964-025-02040-2.
    [14] NIAN ZG, DOU YC, SHEN YQ, et al. Interleukin-34-orchestrated tumor-associated macrophage reprogramming is required for tumor immune escape driven by p53 inactivation[J]. Immunity, 2024, 57( 10): 2344- 2361. e 7. DOI: 10.1016/j.immuni.2024.08.015.
    [15] KONG MY, SHI XY, GAO J, et al. BTF3 affects hepatocellular carcinoma progression by transcriptionally upregulating PDCD2L and inactivating p53 signaling[J]. Mol Med, 2024, 30( 1): 252. DOI: 10.1186/s10020-024-01044-x.
    [16] QU M, ZHANG GX, QU H, et al. Circadian regulator BMAL1:: CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle[J]. Proc Natl Acad Sci USA, 2023, 120( 2): e2214829120. DOI: 10.1073/pnas.2214829120.
    [17] YANG SL, YU C, JIANG JX, et al. Hepatitis B virus X protein disrupts the balance of the expression of circadian rhythm genes in hepatocellular carcinoma[J]. Oncol Lett, 2014, 8( 6): 2715- 2720. DOI: 10.3892/ol.2014.2570.
    [18] CHEN XL, ZHAO QS, WANG HB, et al. Period2 is associated with immune cell infiltration and is a potential diagnostic and prognostic marker for hepatocellular carcinoma[J]. Front Mol Biosci, 2023, 10: 1264553. DOI: 10.3389/fmolb.2023.1264553.
    [19] RAJAN PK, UDOH US, FINLEY R, et al. The biological clock of liver metabolism in metabolic dysfunction-associated steatohepatitis progression to hepatocellular carcinoma[J]. Biomedicines, 2024, 12( 9): 1961. DOI: 10.3390/biomedicines12091961.
    [20] SANCAR A, van GELDER RN. Clocks, cancer, and chronochemotherapy[J]. Science, 2021, 371( 6524): eabb0738. DOI: 10.1126/science.abb0738.
    [21] FELLOWS RC, CHUN SK, LARSON N, et al. Disruption of the intestinal clock drives dysbiosis and impaired barrier function in colorectal cancer[J]. Sci Adv, 2024, 10( 39): eado1458. DOI: 10.1126/sciadv.ado1458.
    [22] LIU YQ, SU ZY, TAVANA O, et al. Understanding the complexity of p53 in a new era of tumor suppression[J]. Cancer Cell, 2024, 42( 6): 946- 967. DOI: 10.1016/j.ccell.2024.04.009.
    [23] MILLER S, KESHERWANI M, CHAN P, et al. CRY2 isoform selectivity of a circadian clock modulator with antiglioblastoma efficacy[J]. Proc Natl Acad Sci USA, 2022, 119( 40): e2203936119. DOI: 10.1073/pnas.2203936119.
    [24] GU WJ, LI T, HUANG YX, et al. Metabolic profile and lipid metabolism phenotype in mice with conditional deletion of hepatic BMAL1[J]. Int J Mol Sci, 2024, 25( 11): 6070. DOI: 10.3390/ijms25116070.
    [25] FERRELL JM. Chronobiology of cancers in the liver and gut[J]. Cancers(Basel), 2024, 16( 17): 2925. DOI: 10.3390/cancers16172925.
    [26] SHENG MF, ZHANG YY, WANG YY, et al. Decoding the role of aberrant RNA alternative splicing in hepatocellular carcinoma: A comprehensive review[J]. J Cancer Res Clin Oncol, 2023, 149( 19): 17691- 17708. DOI: 10.1007/s00432-023-05474-8.
    [27] HUANG CJ, XIAO X, ZHOU L, et al. Chinese expert consensus statement on the clinical application of AFP/AFP-L3%/DCP using GALAD and GALAD-like algorithm in HCC[J]. J Clin Lab Anal, 2023, 37( 23-24): e24990. DOI: 10.1002/jcla.24990.
    [28] YAN C, CHEN XG, JIN HL, et al. Role of the criteria based on preoperative serological indexes of AFP and GGT in predicting long-term survival of patients with hepatocellular carcinoma after liver transplantation[J]. Organ Transpl, 2023, 14( 2): 248- 256. DOI: 10.3969/j.issn.1674-7445.2023.02.011.

    严成, 陈新国, 金海龙, 等. 基于术前血清学指标AFP和GGT的标准在预测肝细胞癌患者肝移植术后长期生存中的作用研究[J]. 器官移植, 2023, 14( 2): 248- 256. DOI: 10.3969/j.issn.1674-7445.2023.02.011.
    [29] ZHU XJ, ZHANG ZX, ZHANG JX, et al. Single-cell and bulk transcriptomic analyses reveal a stemness and circadian rhythm disturbance-related signature predicting clinical outcome and immunotherapy response in hepatocellular carcinoma[J]. Curr Gene Ther, 2025, 25( 2): 178- 193. DOI: 10.2174/0115665232298240240529131358.
    [30] CHI H, YANG JY, PENG GG, et al. Circadian rhythm-related genes index: A predictor for HNSCC prognosis, immunotherapy efficacy, and chemosensitivity[J]. Front Immunol, 2023, 14: 1091218. DOI: 10.3389/fimmu.2023.1091218.
    [31] LIU G, LUO YR, LIU JH, et al. Identification of a novel circadian rhythm-related signature for predicting prognosis and therapies in hepatocellular carcinoma based on bulk and single-cell RNA sequencing[J]. Eur J Cancer Care, 2024, 2024: 1834636. DOI: 10.1155/2024/1834636.
    [32] WANG C, ZENG Q, GÜL ZM, et al. Circadian tumor infiltration and function of CD8+ T cells dictate immunotherapy efficacy[J]. Cell, 2024, 187( 11): 2690- 2702. e 17. DOI: 10.1016/j.cell.2024.04.015.
    [33] HUANG MX, DUAN SY, ZHANG QW, et al. Deciphering the diurnal rhythm regulating mechanism of flavin-containing monooxygenase 3 in mouse liver[J]. Int J Biochem Cell Biol, 2024, 169: 106538. DOI: 10.1016/j.biocel.2024.106538.
    [34] OKYAR A, OZTURK CIVELEK D, AKYEL YK, et al. The role of the circadian timing system on drug metabolism and detoxification: An update[J]. Expert Opin Drug Metab Toxicol, 2024, 20( 6): 503- 517. DOI: 10.1080/17425255.2024.2356167.
    [35] HRUSHESKY WJ. Circadian timing of cancer chemotherapy[J]. Science, 1985, 228( 4695): 73- 75. DOI: 10.1126/science.3883493.
    [36] WADA K, HATTORI A, MARUYAMA Y, et al. Dietary melatonin and liver cancer incidence in Japan: From the Takayama study[J]. Cancer Sci, 2024, 115( 5): 1688- 1694. DOI: 10.1111/cas.16103.
    [37] NABIH HK, HAMED AR, YAHYA SMM. Anti-proliferative effect of melatonin in human hepatoma HepG2 cells occurs mainly through cell cycle arrest and inflammation inhibition[J]. Sci Rep, 2023, 13( 1): 4396. DOI: 10.1038/s41598-023-31443-9.
    [38] HAMED AR, YAHYA SMM, NABIH HK. Anti-drug resistance, anti-inflammation, and anti-proliferation activities mediated by melatonin in doxorubicin-resistant hepatocellular carcinoma: in vitro investigations[J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396( 6): 1117- 1128. DOI: 10.1007/s00210-023-02385-w.
    [39] QIN P, LI YR, SU YJ, et al. Bifidobacterium adolescentis-derived hypaphorine alleviates acetaminophen hepatotoxicity by promoting hepatic Cry1 expression[J]. J Transl Med, 2024, 22( 1): 525. DOI: 10.1186/s12967-024-05312-6.
    [40] ANABTAWI N, CVAMMEN W, KEMP MG. Pharmacological inhibition of cryptochrome and REV-ERB promotes DNA repair and cell cycle arrest in cisplatin-treated human cells[J]. Sci Rep, 2021, 11( 1): 17997. DOI: 10.1038/s41598-021-97603-x.
    [41] GOMATOU G, KARACHALIOU A, VELOUDIOU OZ, et al. The role of REV-ERB receptors in cancer pathogenesis[J]. Int J Mol Sci, 2023, 24( 10): 8980. DOI: 10.3390/ijms24108980.
  • 加载中
表(1)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  136
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-31
  • 录用日期:  2025-02-20
  • 出版日期:  2025-07-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回