中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

牙髓间充质干细胞治疗自身免疫性肝炎小鼠模型的效果及其免疫调控机制

李茵 李晓东 宋光元 史婉婉 王贵强

引用本文:
Citation:

牙髓间充质干细胞治疗自身免疫性肝炎小鼠模型的效果及其免疫调控机制

DOI: 10.12449/JCH250719
基金项目: 

北京市科技新星计划交叉合作项目 (20220484166)

伦理学声明:本研究方案于2023年6月14日经由首都医科大学附属北京积水潭医院动物研究委员会批准,批号:202306006,符合实验室动物管理与使用准则。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:李茵负责设计论文框架,起草论文;宋光元负责实验操作,研究过程的实施; 李晓东负责数据收集,统计学分析、绘制图表;史婉婉负责论文修改;王贵强负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    李茵, leeyin78@163.com (ORCID: 0009-0008-8606-2769)

    王贵强, john131212@hotmail.com (ORCID: 0000-0003-0515-7974)

Therapeutic effects of dental pulp stem cells in a mouse model of autoimmune hepatitis and related immunoregulatory mechanisms

Research funding: 

Beijing Nova Program (20220484166)

More Information
  • 摘要:   目的  探讨牙髓间充质干细胞(DPSC)在体内外实验中对自身免疫性肝炎的治疗作用及相关机制。  方法  首先通过体外共培养体系评估DPSC的免疫调节作用;然后进行动物实验,将32只小鼠随机分成健康对照组、模型组、阳性药物组、DPSC治疗组,每组8只。检测各组血清ALT、AST及炎症因子水平,HE染色评估肝脏病理损伤。计量资料符合正态分布多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验。  结果  体外实验结果显示DPSC的CD105、CD73和CD90阳性率分别为99.97%、100%和99.53%;而CD34、HLA-DR和CD45阳性率分别为0.56%、0.17%和0,符合间充质干细胞特征。DPSC可显著抑制辅助性T细胞(Th)1和Th17的增殖,抑制率分别为31.32%、45.76%;DPSC可促进调节性T细胞(Treg)(CD4+CD25+FoxP3+)的增殖,促进率为52.29%。DPSC对淋巴细胞的增殖抑制率为93.70%。在自身免疫性肝炎小鼠模型中,DPSC治疗组小鼠血清ALT、AST水平较模型组显著下降66.8%和60.0%(t值分别为3.321、2.907,P值分别为0.007 5、0.017 5),炎症相关因子TNF-α和IL-1β显著下降57.5%和71.3%(t值分别为2.484、2.796,P值分别为0.039 8、0.020 6),组织病理学结果显示门静脉周桥接坏死改善不明显(t=1.969,P=0.098)。  结论  DPSC通过免疫调节有效缓解免疫性肝损伤,为临床转化提供了实验依据。

     

  • 注: a,牙髓分离;b,DPSC细胞培养光镜照片(×10)。

    图  1  DPSC的培养与鉴定

    Figure  1.  Cultivation and identification of DPSC

    图  2  DPSC鉴定的流式细胞仪结果

    Figure  2.  Flow cytometry results of DPSC identification

    注: a,成脂分化(油红O染色,×20);b,成骨分化(茜素红染色,×4);c,成软骨分化(阿利新蓝染色,×10)。

    图  3  DPSC的三系分化能力

    Figure  3.  Osteogenic, adipogenic and chondrogenic differentiation of DPSC

    注: a,Th1流式细胞仪结果;b,Th17流式细胞仪结果;c,Treg流式细胞仪结果;d,经CFSE染色的PBMC扩增分析。

    图  4  DPSC在体外的免疫调节作用

    Figure  4.  Immunoregulation of DPSC in vitro

    图  5  干细胞治疗ConA诱导的自身免疫性肝损伤的动物实验流程图

    Figure  5.  Flowchart of stem cell treatment for ConA-induced autoimmune liver injury in mouse

    注: a,体质量变化;b,肝重量变化。

    图  6  干细胞治疗前后小鼠体质量和肝质量变化

    Figure  6.  Changes in body weight and liver weight of mice before and after stem cell treatment

    图  7  DPSC改善ConA诱导免疫性肝损伤小鼠的转氨酶和炎症因子

    Figure  7.  DPSC improve transaminase and inflammatory factors in ConA-induced immune liver injury mice

    注: a,4组的组织病理学结果(HE染色,×10),白色箭头表示各组门静脉周桥接坏死情况;b,直方图展示病理结果。

    图  8  各组小鼠肝组织病理学结果

    Figure  8.  The histopathology results of liver tissues in each group of mice​

  • [1] KERKAR N, CHAN A. Autoimmune hepatitis, sclerosing cholangitis, and autoimmune sclerosing cholangitis or overlap syndrome[J]. Clin Liver Dis, 2018, 22( 4): 689- 702. DOI: 10.1016/j.cld.2018.06.005.
    [2] VOLK ML, REAU N. Diagnosis and management of autoimmune hepatitis in adults and children: A patient-friendly summary of the 2019 AASLD guidelines[J]. Clin Liver Dis(Hoboken), 2021, 17( 2): 85- 89. DOI: 10.1002/cld.1080.
    [3] LOHSE AW, SEBODE M, JØRGENSEN MH, et al. Second-line and third-line therapy for autoimmune hepatitis: A position statement from the European Reference Network on Hepatological Diseases and the International Autoimmune Hepatitis Group[J]. J Hepatol, 2020, 73( 6): 1496- 1506. DOI: 10.1016/j.jhep.2020.07.023.
    [4] FRIEDENSTEIN AJ. Precursor cells of mechanocytes[J]. Int Rev Cytol, 1976, 47: 327- 359. DOI: 10.1016/s0074-7696(08)60092-3.
    [5] NOORT WA, KRUISSELBRINK AB, IN'T ANKER PS, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34+ cells in NOD/SCID mice[J]. Exp Hematol, 2002, 30( 8): 870- 878. DOI: 10.1016/S0301-472X(02)00820-2.
    [6] di NICOLA M, CARLO-STELLA C, MAGNI M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood, 2002, 99( 10): 3838- 3843. DOI: 10.1182/blood.v99.10.3838.
    [7] TSE WT, PENDLETON JD, BEYER WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation[J]. Transplantation, 2003, 75( 3): 389- 397. DOI: 10.1097/01.TP.0000045055.63901.A9.
    [8] CORCIONE A, BENVENUTO F, FERRETTI E, et al. Human mesenchymal stem cells modulate B-cell functions[J]. Blood, 2006, 107( 1): 367- 372. DOI: 10.1182/blood-2005-07-2657.
    [9] JIANG XX, ZHANG Y, LIU B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells[J]. Blood, 2005, 105( 10): 4120- 4126. DOI: 10.1182/blood-2004-02-0586.
    [10] ENGLISH K, BARRY FP, MAHON BP. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation[J]. Immunol Lett, 2008, 115( 1): 50- 58. DOI: 10.1016/j.imlet.2007.10.002.
    [11] SPAGGIARI GM, CAPOBIANCO A, BECCHETTI S, et al. Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation[J]. Blood, 2006, 107( 4): 1484- 1490. DOI: 10.1182/blood-2005-07-2775.
    [12] SHI YF, WANG Y, LI Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases[J]. Nat Rev Nephrol, 2018, 14( 8): 493- 507. DOI: 10.1038/s41581-018-0023-5.
    [13] STEFAŃSKA K, VOLPONI AA, KULUS M, et al. Dental pulp stem cells-A basic research and future application in regenerative medicine[J]. Biomed Pharmacother, 2024, 178: 116990. DOI: 10.1016/j.biopha.2024.116990.
    [14] LIU H, GRONTHOS S, SHI S. Dental pulp stem cells[J]. Methods Enzymol, 2006, 419: 99- 113. DOI: 10.1016/s0076-6879(06)19005-9.
    [15] TAŞLı PN, TAPŞıN S, DEMIREL S, et al. Isolation and characterization of dental pulp stem cells from a patient with Papillon-Lefèvre syndrome[J]. J Endod, 2013, 39( 1): 31- 38. DOI: 10.1016/j.joen.2012.09.024.
    [16] RODAS-JUNCO BA, VILLICAÑA C. Dental pulp stem cells: Current advances in isolation, expansion and preservation[J]. Tissue Eng Regen Med, 2017, 14( 4): 333- 347. DOI: 10.1007/s13770-017-0036-3.
    [17] LAN XY, SUN ZW, CHU CY, et al. Dental pulp stem cells: An attractive alternative for cell therapy in ischemic stroke[J]. Front Neurol, 2019, 10: 824. DOI: 10.3389/fneur.2019.00824.
    [18] MATSUBARA K, MATSUSHITA Y, SAKAI K, et al. Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity[J]. J Neurosci, 2015, 35( 6): 2452- 2464. DOI: 10.1523/JNEUROSCI.4088-14.2015.
    [19] LI FY, WANG XX, SHI J, et al. Anti-inflammatory effect of dental pulp stem cells[J]. Front Immunol, 2023, 14: 1284868. DOI: 10.3389/fimmu.2023.1284868.
    [20] DEMIRCAN PC, SARIBOYACI AE, UNAL ZS, et al. Immunoregulatory effects of human dental pulp-derived stem cells on T cells: Comparison of transwell co-culture and mixed lymphocyte reaction systems[J]. Cytotherapy, 2011, 13( 10): 1205- 1220. DOI: 10.3109/14653249.2011.605351.
    [21] CHEN PX, LIN YC, LIN WB, et al. Human dental pulp stem cells have comparable abilities to umbilical cord mesenchymal stem/stromal cells in regulating inflammation and ameliorating hepatic fibrosis[J]. Hum Cell, 2024, 37( 1): 204- 213. DOI: 10.1007/s13577-023-01004-3.
    [22] IWANAKA T, YAMAZA T, SONODA S, et al. A model study for the manufacture and validation of clinical-grade deciduous dental pulp stem cells for chronic liver fibrosis treatment[J]. Stem Cell Res Ther, 2020, 11( 1): 134. DOI: 10.1186/s13287-020-01630-w.
    [23] LI Y, SONG GY, JIANG Y, et al. Single-cell transcriptome analysis of stem cells from human exfoliated deciduous teeth investigating functional heterogeneity in immunomodulation[J]. Sci Rep, 2024, 14( 1): 31279. DOI: 10.1038/s41598-024-82734-8.
  • 加载中
图(8)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  195
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-26
  • 录用日期:  2025-06-26
  • 出版日期:  2025-07-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回