中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表没食子儿茶素没食子酸酯治疗实验性代谢相关脂肪性肝炎的效果及机制分析

徐笑 张倩 孙沁梅 胡义扬 辛鑫 冯琴

引用本文:
Citation:

表没食子儿茶素没食子酸酯治疗实验性代谢相关脂肪性肝炎的效果及机制分析

DOI: 10.12449/JCH250716
基金项目: 

国家自然科学基金面上项目 (82174040);

上海扬帆计划 (23YF1448200);

中国科学院上海药物研究所与上海中医药大学中医药创新团队联合研究项目 (2022);

中国科学院上海药物研究所与上海中医药大学中医药创新团队联合研究项目 (E2G807H)

伦理学声明:本研究方案于2017年10月20日经由上海中医药大学实验动物伦理委员会审批,批号:SZY201710017,符合实验室动物管理与使用准则。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:徐笑负责设计论文框架,起草论文;张倩负责实验操作,研究过程的实施;辛鑫负责数据收集,统计学分析,绘制图表;冯琴、辛鑫、孙沁梅负责论文修改;冯琴、胡义扬负责拟定写作思路;冯琴、辛鑫指导撰写文章并最后定稿。
详细信息
    通信作者:

    辛鑫, xinxinliver@shutcm.edu.cn (ORCID: 0000-0003-4899-9127)

    冯琴, fengqin@shutcm.edu.cn (ORCID: 0000-0002-4641-1636)

Efficacy and mechanism of epigallocatechin-3-gallate in treatment of experimental metabolic dysfunction-associated steatohepatitis

Research funding: 

General Program of National Natural Science Foundation of China (82174040);

Shanghai Sailing Program (23YF1448200);

SIMM-SHUTCM Traditional Chinese Medicine Innovation Joint Research Program (2022);

SIMM-SHUTCM Traditional Chinese Medicine Innovation Joint Research Program (E2G807H)

More Information
  • 摘要:   目的  探究表没食子儿茶素没食子酸酯(EGCG)对代谢相关脂肪性肝炎(MASH)体内外模型的影响及作用机制,为临床开发应用提供依据。  方法  32只实验用C57BL/6J小鼠随机分为正常饮食组(Con,n=8)和模型组(n=24)。模型组小鼠使用高反式脂肪酸高糖(HFHC)饮食诱导24周,建立MASH模型,第24周末将模型组小鼠随机分为HFHC组、EGCG组(给药剂量为每只小鼠100 mg·kg-1·d-1)和奥贝胆酸用药组(给药剂量为每只小鼠10 mg·kg-1·d-1)(OCA组),每组8只。EGCG组和OCA组给药6周后收集标本,观察小鼠一般情况;检测肝组织甘油三酯(TG)含量,肝组织羟脯氨酸(HYP)含量,血清ALT、AST水平;使用HE染色、油红O染色、天狼星红染色观察肝组织病理学改变。体外实验采用游离脂肪酸(FFA)诱导L02细胞脂质沉积模型;设对照组(Con组)、FFA组和EGCG处理组(EGCG组)。检测细胞内TG含量、油红O染色以及TNF-α、CCL2、CXCL10 mRNA相对表达量。运用转录组学技术对Con组、HFHC组和EGCG组小鼠肝组织进行差异基因分析和基因集富集分析,挑选富集通路差异程度P-adjust<0.05且与MASH相关的通路进一步分类(代谢相关类和炎症类)分析,对两类通路中的具体信号通路按照富集程度分别从大到小排列,对排名前三信号通路中的关键基因进行体内PCR验证,并挑选NOD样受体信号通路中重要基因通过蛋白质印迹法验证。符合正态分布和方差齐性的计量资料,多组间比较采用单因素方差分析,进一步两两比较使用LSD-t检验。  结果  与HFHC组相比,EGCG组小鼠肝组织TG含量显著下降(P<0.05);血清ALT和AST显著降低(P值均<0.05);油红O染色显示EGCG组小鼠肝细胞脂肪变性明显改善;HE结果显示EGCG可显著减轻炎症;天狼星红染色结果显示,EGCG给药之后纤维组织的数量明显减少;EGCG干预后肝组织HYP含量明显减少(P<0.01)。细胞实验结果发现,与FFA组相比,EGCG组TG含量显著降低,油红O结果显示EGCG组与FFA组相比脂滴明显消散,炎症因子TNF-α、CCL2和CXCL10 mRNA相对表达显著降低(P值均<0.01)。肝组织转录组学结果显示,HFHC组和EGCG组之间共有230个差异表达基因,其中上调基因108个,下调基因122个。EGCG可以显著降低小鼠肝组织中NOD样受体信号通路上关键蛋白TLR4、NLRP3、IL-1β的表达水平(P值均<0.05)。  结论  EGCG可显著改善MASH小鼠模型脂质沉积、炎症和纤维化程度,改善肝细胞L02脂质沉积和炎症损伤,其机制可能与调控NOD样受体信号通路有关。

     

  • 注: a,小鼠大体和肝脏形态肉眼观;b,小鼠30周末体质量和肝湿重;c,肝组织病理染色;d,肝组织TG含量、NAS评分和HYP含量;e,血清ALT和AST水平。

    图  1  EGCG对HFHC饮食诱导MASH小鼠肝脂质沉积、炎症及纤维化程度的影响

    Figure  1.  Effect of EGCG on HFHC diet-induced liver lipid deposition, inflammation, and fibrosis in MASH mice

    注: a,L02细胞生存率及L02细胞内TG含量;b,细胞油红O染色;c,各组细胞TNF-α、CCL2和CXCL10 mRNA相对表达量。

    图  2  EGCG对FFA诱导L02细胞模型脂质沉积和炎症程度的影响

    Figure  2.  Effect of EGCG on free fatty acid-induced lipid deposition and degree of inflammation in the L02 cell model

    图  3  HFHC组与EGCG组主成分分析图、差异基因聚类热图、表达量差异火山图(n=5)

    Figure  3.  PCA plot, differentially expressed gene clustering heatmap, and volcano plot of expression differences between HFHC and EGCG groups(n=5)

    图  4  代谢相关通路GSEA曲线及部分基因验证

    Figure  4.  GSEA curves of metabolism-related pathways and partial gene validation

    图  5  炎症相关通路GSEA曲线及部分基因验证

    Figure  5.  GSEA curves of inflammation-related pathways and partial gene validation

    注: a,肝组织TLR4、NLRP3和IL-1β蛋白表达;b,蛋白表达半定量分析。

    图  6  EGCG对MASH小鼠肝组织NOD样信号转导通路的调控作用

    Figure  6.  Regulatory effect of EGCG on NOD-like signal transduction pathway in MASH mouse liver tissue

  • [1] SCHWÄRZLER J, GRABHERR F, GRANDER C, et al. The pathophysiology of MASLD: An immunometabolic perspective[J]. Expert Rev Clin Immunol, 2024, 20( 4): 375- 386. DOI: 10.1080/1744666X.2023.2294046.
    [2] WONG VW, EKSTEDT M, WONG GL, et al. Changing epidemiology, global trends and implications for outcomes of NAFLD[J]. J Hepatol, 2023, 79( 3): 842- 852. DOI: 10.1016/j.jhep.2023.04.036.
    [3] TARGHER G, BYRNE CD, TILG H. MASLD: A systemic metabolic disorder with cardiovascular and malignant complications[J]. Gut, 2024, 73( 4): 691- 702. DOI: 10.1136/gutjnl-2023-330595.
    [4] LI F, LI MW, WANG YS. Therapeutic paradigms and potential therapies for nonalcoholic steatohepatitis[J]. J Clin Hepatol, 2024, 40( 10): 2082- 2086. DOI: 10.12449/JCH241025.

    李凤, 李茂微, 王雨杉. 非酒精性脂肪肝病的治疗模式和潜在疗法[J]. 临床肝胆病杂志, 2024, 40( 10): 2082- 2086. DOI: 10.12449/JCH241025.
    [5] YOUNOSSI ZM, STEPANOVA M, RACILA A, et al. Health-related quality of life(HRQL) assessments in a 52-week, double-blind, randomized, placebo-controlled phase 3 study of resmetirom(MGL-3196) in patients with metabolic dysfunction associated steatohepatitis(MASH) and fibrosis[J]. Hepatology, 2025, 81( 4): 1318- 1327. DOI: 10.1097/HEP. 0000000000001084.
    [6] SHIMOTOYODOME A, HARAMIZU S, INABA M, et al. Exercise and green tea extract stimulate fat oxidation and prevent obesity in mice[J]. Med Sci Sports Exerc, 2005, 37( 11): 1884- 1892. DOI: 10.1249/01.mss.0000178062.66981.a8.
    [7] YE Q, LIU Y, CHEN JP, et al. Research progress on chemical constituents and pharmacological activities of green tea[J]. Drug Eval Res, 2021, 44( 12): 2711- 2719. DOI: 10.7501/j.issn.1674-6376.2021.12.026.

    叶晴, 刘毅, 陈金鹏, 等. 绿茶化学成分及药理作用研究进展[J]. 药物评价研究, 2021, 44( 12): 2711- 2719. DOI: 10.7501/j.issn.1674-6376.2021.12.026.
    [8] SINGH BN, SHANKAR S, SRIVASTAVA RK. Green tea catechin, epigallocatechin-3-gallate(EGCG): Mechanisms, perspectives and clinical applications[J]. Biochem Pharmacol, 2011, 82( 12): 1807- 1821. DOI: 10.1016/j.bcp.2011.07.093.
    [9] HE MJ, CHU TH, WANG ZT, et al. Inhibition of macrophages inflammasome activation via autophagic degradation of HMGB1 by EGCG ameliorates HBV-induced liver injury and fibrosis[J]. Front Immunol, 2023, 14: 1147379. DOI: 10.3389/fimmu.2023.1147379.
    [10] CZECH TY, SEKI E. Kupffer cell TLR2/3 signaling: A pathway for EGCG amelioration of ethanol-induced hepatic injury[J]. Cell Mol Gastroenterol Hepatol, 2020, 9( 1): 187- 188. DOI: 10.1016/j.jcmgh.2019.10.001.
    [11] LIN YX, HUANG J, GAO TF, et al. Preliminary study on hepatoprotective effect and mechanism of(-)-epigallocatechin-3-gallate against acetaminophen-induced liver injury in rats[J]. Iran J Pharm Res, 2021, 20( 3): 46- 56. DOI: 10.22037/ijpr.2020.112727.13918.
    [12] TANG GY, XU Y, ZHANG C, et al. Green tea and epigallocatechin gallate(EGCG) for the management of nonalcoholic fatty liver diseases(NAFLD): Insights into the role of oxidative stress and antioxidant mechanism[J]. Antioxidants(Basel), 2021, 10( 7): 1076. DOI: 10.3390/antiox10071076.
    [13] KLEINER DE, BRUNT EM, van NATTA M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease[J]. Hepatology, 2005, 41( 6): 1313- 1321. DOI: 10.1002/hep.20701.
    [14] OHISHI T, GOTO S, MONIRA P, et al. Anti-inflammatory action of green tea[J]. Antiinflamm Antiallergy Agents Med Chem, 2016, 15( 2): 74- 90. DOI: 10.2174/1871523015666160915154443.
    [15] ALAM M, ALI S, ASHRAF GM, et al. Epigallocatechin 3-gallate: From green tea to cancer therapeutics[J]. Food Chem, 2022, 379: 132135. DOI: 10.1016/j.foodchem.2022.132135.
    [16] MASTERJOHN C, BRUNO RS. Therapeutic potential of green tea in nonalcoholic fatty liver disease[J]. Nutr Rev, 2012, 70( 1): 41- 56. DOI: 10.1111/j.1753-4887.2011.00440.x.
    [17] DING Y, SUN X, CHEN YN, et al. Epigallocatechin gallate attenuated non-alcoholic steatohepatitis induced by methionine- and choline-deficient diet[J]. Eur J Pharmacol, 2015, 761: 405- 412. DOI: 10.1016/j.ejphar.2015.05.005.
    [18] LIU JJ, SUN JY, YU JK, et al. Gut microbiome determines therapeutic effects of OCA on NAFLD by modulating bile acid metabolism[J]. NPJ Biofilms Microbiomes, 2023, 9( 1): 29. DOI: 10.1038/s41522-023-00399-z.
    [19] YOUNOSSI ZM, RATZIU V, LOOMBA R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial[J]. Lancet, 2019, 394( 10215): 2184- 2196. DOI: 10.1016/S0140-6736(19)33041-7.
    [20] HOU HM, YANG WL, BAO SQ, et al. Epigallocatechin gallate suppresses inflammatory responses by inhibiting toll-like receptor 4 signaling and alleviates insulin resistance in the livers of high-fat-diet rats[J]. J Oleo Sci, 2020, 69( 5): 479- 486. DOI: 10.5650/jos.ess19303.
    [21] XIAO J, HO CT, LIONG EC, et al. Epigallocatechin gallate attenuates fibrosis, oxidative stress, and inflammation in non-alcoholic fatty liver disease rat model through TGF/SMAD, PI3K/Akt/FoxO1, and NF-kappa B pathways[J]. Eur J Nutr, 2014, 53( 1): 187- 199. DOI: 10.1007/s00394-013-0516-8.
    [22] LIN QW, ZHANG S, LU WQ. Research progress of NOD-like signaling pathways and the relationship between NOD and tumor[J]. China Oncol, 2019, 29( 3): 223- 228. DOI: 10.19401/j.cnki.1007-3639.2019.03.011.

    林巧卫, 张思, 陆维祺. NOD样受体介导的信号转导通路及其与肿瘤关系的研究进展[J]. 中国癌症杂志, 2019, 29( 3): 223- 228. DOI: 10.19401/j.cnki.1007-3639.2019.03.011.
    [23] BAUER S, HEZINGER L, REXHEPI F, et al. NOD-like receptors-emerging links to obesity and associated morbidities[J]. Int J Mol Sci, 2023, 24( 10): 8595. DOI: 10.3390/ijms24108595.
    [24] LI HX, CAO ZQ, WANG LL, et al. Chronic high-fat diet induces galectin-3 and TLR4 to activate NLRP3 inflammasome in NASH[J]. J Nutr Biochem, 2023, 112: 109217. DOI: 10.1016/j.jnutbio.2022.109217.
    [25] ZHENG D, KERN L, ELINAV E. The NLRP6 inflammasome[J]. Immunology, 2021, 162( 3): 281- 289. DOI: 10.1111/imm.13293.
    [26] HUANG CY, LIU QH, TANG Q, et al. Hepatocyte-specific deletion of Nlrp6 in mice exacerbates the development of non-alcoholic steatohepatitis[J]. Free Radic Biol Med, 2021, 169: 110- 121. DOI: 10.1016/j.freeradbiomed.2021.04.008.
    [27] HASEGAWA M, FUJIMOTO Y, LUCAS PC, et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation[J]. EMBO J, 2008, 27( 2): 373- 383. DOI: 10.1038/sj.emboj.7601962.
  • 加载中
图(6)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  149
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-15
  • 录用日期:  2024-12-02
  • 出版日期:  2025-07-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回