中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转运RNA衍生小RNA(tsRNA)的生物学功能及在肝脏疾病中的表达和临床意义

李银丽 徐炎 管志伟 孟璐 渠怡彤 邱建利

引用本文:
Citation:

转运RNA衍生小RNA(tsRNA)的生物学功能及在肝脏疾病中的表达和临床意义

DOI: 10.12449/JCH250634
基金项目: 

国家自然科学基金 (81804142);

国家自然科学基金 (82474570);

中国博士后科学基金面上项目 (2023M731027)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:李银丽负责论文资料收集与总结,撰写论文;徐炎、管志伟负责论文审阅与修订;孟璐、渠怡彤参与论文资料收集与整理;邱建利负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    邱建利, qiujianli@126.com (ORCID: 0000-0001-6796-3774)

Biological function of tRNA-derived small RNA and its expression and clinical significance in liver diseases

Research funding: 

National Natural Science Foundation of China (81804142);

National Natural Science Foundation of China (82474570);

China Postdoctoral Science Foundation General Program (2023M731027)

More Information
    Corresponding author: QIU Jianli, qiujianli@126.com (ORCID: 0000-0001-6796-3774)
  • 摘要: 肝脏疾病早期不易被发现,有创性诊断方式如肝穿刺虽然诊断相对准确,但接受度不高,严重制约肝脏疾病诊疗技术的提高,因此寻找新的生物标志物及新的治疗靶点尤为重要。转运RNA衍生小RNA(tsRNA)作为新兴的液体活检生物标志物,在病毒性肝炎、脂肪性肝病、肝损伤、肝癌等肝脏疾病中异常表达,通过发挥调节基因表达、表观遗传调控、蛋白质翻译等生物学功能,影响肝脏疾病的发生和进展。本文就tsRNA的来源和分类、生物学功能以及tsRNA作为肝脏疾病生物标志物和潜在治疗靶点进行综述,以期为肝脏疾病的早期诊断及治疗提供思路。

     

  • 图  1  tsRNA影响基因甲基化

    Figure  1.  tsRNA affects gene methylation

    图  2  tsRNA参与转录后基因沉默

    Figure  2.  tsRNA is involved in post-transcriptional silencing of genes

    图  3  tsRNA影响mRNA的稳定性

    Figure  3.  tsRNA influences the stability of mRNA

    图  4  tsRNA阻碍翻译起始

    Figure  4.  tsRNA hinders translation initiation

    图  5  tsRNA影响核糖体生物发生

    Figure  5.  tsRNA affects ribosome biogenesis

    图  6  tsRNA抑制细胞凋亡

    Figure  6.  tsRNA inhibits apoptosis

    表  1  tsRNA的类型

    Table  1.   Types of tsRNA

    tsRNA 亚型 生成机制 长度 位置
    tRF tRF-1 由核糖核酸酶Z剪切前体tRNA的3'端产生 14~30 nt 细胞质
    tRF-2 机制不明 不清楚
    tRF-3 由成熟tRNA 3'端T-环处经核酸内切酶切割产生 细胞质
    tRF-5 由成熟tRNA 5'端的D-环或D-环和反密码子环之间的区域通过Dicer酶切割产生 细胞核
    i-tRF 机制不明 不清楚
    tiRNA 3'tiRNA 由成熟tRNA反密码子环经ANG特异性切割产生 31~40 nt 细胞质
    5'tiRNA 细胞质
    tRNA-3 >40 nt 不清楚
    tRNA-5 不清楚
    下载: 导出CSV

    表  2  tsRNA在肝脏疾病中的表达及临床意义

    Table  2.   The expression of tsRNA in liver diseases and its clinical significance

    疾病 tsRNA 所属亚类 表达 临床意义
    ALD Gly-tRF tRF 上调 促进肝损伤和脂肪变性,ALD的潜在治疗靶点38
    MAFLD tRF-Val-CAC-005
    tRF-Ala-CGC-006
    tiRNA-His-GTG-001
    tRF-5b
    tRF-5c
    tiRNA-5
    上调 用于MAFLD诊断及肝纤维化预测40
    tRF-3001b tRF 上调 抑制自噬相关基因Prkaa1的表达,促进MAFLD的发展,MAFLD的
    潜在治疗靶点41
    tRF-47 tRF 激活自噬,减少肝脂质形成,MAFLD的潜在治疗靶点42
    HCC tRNA-val tac-3
    tRNA-GlyTCC-5
    tRNA-ValAAC-5
    tRNA-GluCTC-5
    tRF-3
    5'tiRNA
    5'tiRNA
    tRF-5
    上调 用于HCC临床诊断45
    tRF-40-EFOK8YR951K36D26
    tRF-34-QNR8VP94FQFY1Q
    tRF-32-79mp9NH57SJ
    tRF-31-87R8WP9N1EWJ0
    tRF 上调 用于HCC临床诊断46
    tRF-Gln-TTG-006 tRF-5 上调 用于HCC临床诊断47
    ts-N22 调节肿瘤抑制因子hsa-miR-33a表达,改善HCC的不良预后,调节
    miR-33a-5p干扰HCC细胞对顺铂的耐药性,用于HCC预后判断44
    tRF-39-8HM2OSRNLKSEKH9 tRF 上调 与肿瘤大小呈正相关,其过表达可加速细胞迁移能力,用于HCC
    预后判断48
    Gly-tRF tRF 上调 负调节NDFIP2和激活AKT信号通路,促进肝癌恶化和转移,HCC
    的潜在治疗靶点49
    LeuCAG3'tsRNA tRF LeuCAG3'tsRNA的抑制可诱导癌细胞凋亡,HCC的潜在治疗靶点50
    5'-tiRNA-Gln 5'tiRNA 抑制相关信号通路阻止HCC进展,HCC的潜在治疗靶点25
    ACLF tsRNA-20、tsRNA-46 上调 用于ACLF早期诊断52
    tRF-Gln-CTG-026 tRF-1 促进肝脏修复,ACLF的潜在治疗靶点53
    HBV/HCV 5'tRH Val
    5'tRH Gly
    5'tiRNA 上调 用于HBV/HCV临床诊断54

    注:“‒”表示不明确。

    下载: 导出CSV
  • [1] SARIN SK, KUMAR M, ESLAM M, et al. Liver diseases in the Asia-Pacific Region: A Lancet Gastroenterology& Hepatology Commission[J]. Lancet Gastroenterol Hepatol, 2020, 5( 2): 167- 228. DOI: 10.1016/S2468-1253(19)30342-5.
    [2] LIU ZQ, LIN CQ, MAO XH, et al. Changing prevalence of chronic hepatitis B virus infection in China between 1973 and 2021: A systematic literature review and meta-analysis of 3 740 studies and 231 million people[J]. Gut, 2023, 72( 12): 2354- 2363. DOI: 10.1136/gutjnl-2023-330691.
    [3] ZHOU JH, ZHOU F, WANG WX, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology, 2020, 71( 5): 1851- 1864. DOI: 10.1002/hep.31150.
    [4] YANG B, ZHANG R. Progress on the treatment of metabolic associated fatty liver disease[J/CD]. Chin J Liver Dis(Electronic Edition), 2024, 16( 4): 25- 30. DOI: 10.3969/j.issn.1674-7380.2024.04.00.

    杨彬, 张瑞. 代谢相关脂肪性肝病治疗进展[J/CD]. 中国肝脏病杂志(电子版), 2024, 16( 4): 25- 30. DOI: 10.3969/j.issn.1674-7380.2024.04.00.
    [5] ZHANG F, JU JM, DIAO HT, et al. Innovative pharmacotherapy for hepatic metabolic and chronic inflammatory diseases in China[J]. Br J Pharmacol, 2024. DOI: 10.1111/bph.16342.[ Online ahead of print]
    [6] TSONEVA DK, IVANOV MN, VINCIGUERRA M. Liquid liver biopsy for disease diagnosis and prognosis[J]. J Clin Transl Hepatol, 2023, 11( 7): 1520- 1541. DOI: 10.14218/jcth.2023.00040.
    [7] DU J, HUANG TY, ZHENG Z, et al. Biological function and clinical application prospect of tsRNAs in digestive system biology and pathology[J]. Cell Commun Signal, 2023, 21( 1): 302. DOI: 10.1186/s12964-023-01341-8.
    [8] XIE YY, YAO LP, YU XC, et al. Action mechanisms and research methods of tRNA-derived small RNAs[J]. Signal Transduct Target Ther, 2020, 5( 1): 109. DOI: 10.1038/s41392-020-00217-4.
    [9] KATSARAKI K, ARTEMAKI PI, PAPAGEORGIOU SG, et al. Identification of a novel, internal tRNA-derived RNA fragment as a new prognostic and screening biomarker in chronic lymphocytic leukemia, using an innovative quantitative real-time PCR assay[J]. Leuk Res, 2019, 87: 106234. DOI: 10.1016/j.leukres.2019.106234.
    [10] PENG RF, SANTOS HJ, NOZAKI T. Transfer RNA-derived small RNAs in the pathogenesis of parasitic protozoa[J]. Genes(Basel), 2022, 13( 2): 286. DOI: 10.3390/genes13020286.
    [11] YU XC, XIE YY, ZHANG SS, et al. tRNA-derived fragments: Mechanisms underlying their regulation of gene expression and potential applications as therapeutic targets in cancers and virus infections[J]. Theranostics, 2021, 11( 1): 461- 469. DOI: 10.7150/thno.51963.
    [12] YANG N, LI RJ, LIU RA, et al. The emerging function and promise of tRNA-derived small RNAs in cancer[J]. J Cancer, 2024, 15( 6): 1642- 1656. DOI: 10.7150/jca.89219.
    [13] LIAO JY, GUO YH, ZHENG LL, et al. Both endo-siRNAs and tRNA-derived small RNAs are involved in the differentiation of primitive eukaryote Giardia Lamblia[J]. Proc Natl Acad Sci U S A, 2014, 111( 39): 14159- 14164. DOI: 10.1073/pnas.1414394111.
    [14] BALATTI V, NIGITA G, VENEZIANO D, et al. tsRNA signatures in cancer[J]. Proc Natl Acad Sci U S A, 2017, 114( 30): 8071- 8076. DOI: 10.1073/pnas.1706908114.
    [15] ZHANG X, HE X, LIU C, et al. IL-4 inhibits the biogenesis of an epigenetically suppressive PIWI-interacting RNA to upregulate CD1a molecules on monocytes/dendritic cells[J]. J Immunol, 2016, 196( 4): 1591- 1603. DOI: 10.4049/jimmunol.1500805.
    [16] TONG LH, ZHANG WX, QU BC, et al. The tRNA-derived fragment-3017A promotes metastasis by inhibiting NELL2 in human gastric cancer[J]. Front Oncol, 2021, 10: 570916. DOI: 10.3389/fonc.2020.570916.
    [17] ZHANG SS, GU YQ, GE JX, et al. tRF-33-P4R8YP9LON4VDP inhibits gastric cancer progression via modulating STAT3 signaling pathway in an AGO2-dependent manner[J]. Oncogene, 2024, 43( 28): 2160- 2171. DOI: 10.1038/s41388-024-03062-9.
    [18] GOODARZI H, LIU XH, NGUYEN HCB, et al. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement[J]. Cell, 2015, 161( 4): 790- 802. DOI: 10.1016/j.cell.2015.02.053.
    [19] FALCONI M, GIANGROSSI M, ZABALETA ME, et al. A novel 3'- tRNAGlu-derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin[J]. FASEB J, 2019, 33( 12): 13228- 13240. DOI: 10.1096/fj.201900382rr.
    [20] CHEN Q, YAN MH, CAO ZH, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder[J]. Science, 2016, 351( 6271): 397- 400. DOI: 10.1126/science.aad7977.
    [21] SARKER G, SUN WF, ROSENKRANZ D, et al. Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs[J]. Proc Natl Acad Sci USA, 2019, 116( 21): 10547- 10556. DOI: 10.1073/pnas.1820810116.
    [22] ZHANG YF, ZHANG XD, SHI JC, et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs[J]. Nat Cell Biol, 2018, 20( 5): 535- 540. DOI: 10.1038/s41556-018-0087-2.
    [23] YU T, XIE YM, TANG C, et al. Dnmt2-null sperm block maternal transmission of a paramutant phenotype[J]. Biol Reprod, 2021, 105( 3): 603- 612. DOI: 10.1093/biolre/ioab086.
    [24] SHI JC, ZHANG YF, ZHOU T, et al. tsRNAs: The Swiss army knife for translational regulation[J]. Trends Biochem Sci, 2019, 44( 3): 185- 189. DOI: 10.1016/j.tibs.2018.09.007.
    [25] WU CD, LIU DK, ZHANG LF, et al. 5'-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I[J]. Front Med, 2023, 17( 3): 476- 492. DOI: 10.1007/s11684-022-0966-6.
    [26] GEBETSBERGER J, WYSS L, MLECZKO AM, et al. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress[J]. RNA Biol, 2017, 14( 10): 1364- 1373. DOI: 10.1080/15476286.2016.1257470.
    [27] MLECZKO AM, CELICHOWSKI P, BĄKOWSKA-ŻYWICKA K. Transfer RNA-derived fragments target and regulate ribosome-associated aminoacyl-transfer RNA synthetases[J]. Biochim Biophys Acta Gene Regul Mech, 2018: S1874-9399(17)30380- 2. DOI: 10.1016/j.bbagrm.2018.06.001.
    [28] FRICKER R, BROGLI R, LUIDALEPP H, et al. A tRNA half modulates translation as stress response in Trypanosoma brucei[J]. Nat Commun, 2019, 10( 1): 118. DOI: 10.1038/s41467-018-07949-6.
    [29] KIM HK, XU JP, CHU K, et al. A tRNA-derived small RNA regulates ribosomal protein S28 protein levels after translation initiation in humans and mice[J]. Cell Rep, 2019, 29( 12): 3816- 3824. DOI: 10.1016/j.celrep.2019.11.062.
    [30] SAIKIA M, JOBAVA R, PARISIEN M, et al. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress[J]. Mol Cell Biol, 2014, 34( 13): 2450- 2463. DOI: 10.1128/MCB.00136-14.
    [31] KEAM SP, SOBALA A, HAVE S TEN, et al. tRNA-derived RNA fragments associate with human multisynthetase complex(MSC) and modulate ribosomal protein translation[J]. J Proteome Res, 2017, 16( 2): 413- 420. DOI: 10.1021/acs.jproteome.6b00267.
    [32] DI FAZIO A, GULLEROVA M. An old friend with a new face: tRNA-derived small RNAs with big regulatory potential in cancer biology[J]. Br J Cancer, 2023, 128( 9): 1625- 1635. DOI: 10.1038/s41416-023-02191-4.
    [33] BRAICU C, ZIMTA AA, HARANGUS A, et al. The function of non-coding RNAs in lung cancer tumorigenesis[J]. Cancers(Basel), 2019, 11( 5): 605. DOI: 10.3390/cancers11050605.
    [34] SHI JC, ZHANG YF, TAN DM, et al. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications[J]. Nat Cell Biol, 2021, 23( 4): 424- 436. DOI: 10.1038/s41556-021-00652-7.
    [35] RUZMAN L, MIKOLASEVIC I, BARABA DEKANIC K, et al. Advances in diagnosis of chronic liver diseases in pediatric patients[J]. World J Pediatr, 2018, 14( 6): 541- 547. DOI: 10.1007/s12519-018-0197-8.
    [36] SINGH S, OSNA NA, KHARBANDA KK. Treatment options for alcoholic and non-alcoholic fatty liver disease: A review[J]. World J Gastroenterol, 2017, 23( 36): 6549- 6570. DOI: 10.3748/wjg.v23.i36.6549.
    [37] ZHANG PY, WANG WY, MAO M, et al. Similarities and differences: A comparative review of the molecular mechanisms and effectors of NAFLD and AFLD[J]. Front Physiol, 2021, 12: 710285. DOI: 10.3389/fphys.2021.710285.
    [38] ZHONG FD, HU ZG, JIANG KQ, et al. Complement C3 activation regulates the production of tRNA-derived fragments Gly-tRFs and promotes alcohol-induced liver injury and steatosis[J]. Cell Res, 2019, 29( 7): 548- 561. DOI: 10.1038/s41422-019-0175-2.
    [39] HUANG P, TU B, LIAO HJ, et al. Elevation of plasma tRNA fragments as a promising biomarker for liver fibrosis in nonalcoholic fatty liver disease[J]. Sci Rep, 2021, 11( 1): 5886. DOI: 10.1038/s41598-021-85421-0.
    [40] KIM Y, LEE DH, PARK SH, et al. The interplay of microRNAs and transcription factors in autophagy regulation in nonalcoholic fatty liver disease[J]. Exp Mol Med, 2021, 53( 4): 548- 559. DOI: 10.1038/s12276-021-00611-0.
    [41] ZHU JJ, CHENG ML, ZHAO XK. A tRNA-derived fragment(tRF-3001b) aggravates the development of nonalcoholic fatty liver disease by inhibiting autophagy[J]. Life Sci, 2020, 257: 118125. DOI: 10.1016/j.lfs.2020.118125.
    [42] ZHU JJ, WEN Y, ZHANG QL, et al. The monomer TEC of blueberry improves NASH by augmenting tRF-47-mediated autophagy/pyroptosis signaling pathway[J]. J Transl Med, 2022, 20( 1): 128. DOI: 10.1186/s12967-022-03343-5.
    [43] ANWANWAN D, SINGH SK, SINGH S, et al. Challenges in liver cancer and possible treatment approaches[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873( 1): 188314. DOI: 10.1016/j.bbcan.2019.188314.
    [44] ZUO Y, CHEN SQ, YAN LL, et al. Development of a tRNA-derived small RNA diagnostic and prognostic signature in liver cancer[J]. Genes Dis, 2021, 9( 2): 393- 400. DOI: 10.1016/j.gendis.2021.01.006.
    [45] ZHU L, LI J, GONG YL, et al. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis[J]. Mol Cancer, 2019, 18( 1): 74. DOI: 10.1186/s12943-019-1000-8.
    [46] WANG Y, WENG QY, GE JX, et al. tRNA-derived small RNAs: Mechanisms and potential roles in cancers[J]. Genes Dis, 2022, 9( 6): 1431- 1442. DOI: 10.1016/j.gendis.2021.12.009.
    [47] ZHAN SB, YANG P, ZHOU SK, et al. Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis[J]. Front Med, 2022, 16( 2): 216- 226. DOI: 10.1007/s11684-022-0920-7.
    [48] XU TX, YUAN J, SONG F, et al. Exploring the functional role of tRF-39-8HM2OSRNLNKSEKH9 in hepatocellular carcinoma[J]. Heliyon, 2024, 10( 5): e27153. DOI: 10.1016/j.heliyon.2024.e27153.
    [49] ZHOU YQ, HU JJ, LIU L, et al. Gly-tRF enhances LCSC-like properties and promotes HCC cells migration by targeting NDFIP2[J]. Cancer Cell Int, 2021, 21( 1): 502. DOI: 10.1186/s12935-021-02102-8.
    [50] KIM HK, FUCHS G, WANG SC, et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis[J]. Nature, 2017, 552( 7683): 57- 62. DOI: 10.1038/nature25005.
    [51] LUO JJ, LI JQ, LI P, et al. Acute-on-chronic liver failure: Far to go-a review[J]. Crit Care, 2023, 27( 1): 259. DOI: 10.1186/s13054-023-04540-4.
    [52] XU WL, YU MX, WU YK, et al. Plasma-derived exosomal sncRNA as a promising diagnostic biomarker for early detection of HBV-related acute-on-chronic liver failure[J]. Front Cell Infect Microbiol, 2022, 12: 923300. DOI: 10.3389/fcimb.2022.923300.
    [53] YING SY, LI PC, WANG JQ, et al. tRF-Gln-CTG-026 ameliorates liver injury by alleviating global protein synthesis[J]. Signal Transduct Target Ther, 2023, 8( 1): 144. DOI: 10.1038/s41392-023-01351-5.
    [54] SELITSKY SR, BARAN-GALE J, HONDA M, et al. Small tRNA-derived RNAs are increased and more abundant than microRNAs in chronic hepatitis B and C[J]. Sci Rep, 2015, 5: 7675. DOI: 10.1038/srep07675.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  726
  • HTML全文浏览量:  180
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 录用日期:  2024-11-07
  • 出版日期:  2025-06-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回