中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基因修饰间充质干细胞在肝脏疾病治疗中的应用价值

赵婷婷 李俊峰 周丹 高晓琴 岳伟 王汝琴 张立婷

引用本文:
Citation:

基因修饰间充质干细胞在肝脏疾病治疗中的应用价值

DOI: 10.12449/JCH250633
基金项目: 

国家自然科学基金 (82360132);

甘肃省卫生健康行业科技创新重大项目 (GSWSZD2024-11);

甘肃省重点研发计划项目 (22YF7FA085);

甘肃省联合科研基金项目 (23JRRA1489);

甘肃省联合科研基金项目 (24JRRA911);

甘肃省中医药课题重点项目 (GZKZ-2022-7);

甘肃省重点人才项目 (Gan Group No. [2024]4)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:赵婷婷负责查阅文献,撰写文章;周丹、高晓琴、岳伟、王汝琴负责审校;李俊峰、张立婷负责指导立题,文章修改。
详细信息
    通信作者:

    张立婷, zlt08@qq.com (ORCID: 0009-0005-1259-5747)

Application value of gene-modified mesenchymal stem cells in liver diseases

Research funding: 

National Natural Science Foundation of China (82360132);

Major Project of Science and Technology Innovation in Health Sector of Gansu Province (GSWSZD2024-11);

Key R & D Program of Gansu Province (22YF7FA085);

Joint Research Fund Project of Gansu Province (23JRRA1489);

Joint Research Fund Project of Gansu Province (24JRRA911);

Key Project of Traditional Chinese Medicine in Gansu Province (GZKZ-2022-7);

Gansu Provincial Key Talent Project (Gan Group No. [2024]4)

More Information
    Corresponding author: ZHANG Liting, zlt08@qq.com (ORCID: 0009-0005-1259-5747)
  • 摘要: 间充质干细胞的免疫调节、修复和促再生功能使其成为肝脏疾病的潜在治疗方法之一。目前,已经开发出病毒和非病毒递送方法对间充质干细胞进行基因修饰,基因修饰可以促进间充质干细胞存活、归巢、分泌细胞因子等特性,增强间充质干细胞治疗肝脏疾病的能力。本文主要概述基因修饰间充质干细胞治疗肝脏疾病的研究进展,以期为肝脏疾病的临床治疗提供新的见解和策略。

     

  • 注: Q-HSC,静止型HSC;A-HSC,激活态HSC;RPL-1, 再生肝磷酸酶-1。

    图  1  基因修饰的MSC在肝脏疾病治疗中的应用价值

    Figure  1.  The application value of gene-modified mesenchymal stem cells in liver diseases

    表  1  基因修饰的MSC在肝病中的应用

    Table  1.   Application of gene-modified mesenchymal stem cells in liver diseases

    干细胞 基因 基因编辑
    方式
    给药
    方式
    剂量 疾病模型 结果 文献
    毛囊MSC ECM1 慢病毒转染 iv 1×106 肝硬化 抑制HSC活化,减轻肝硬化 29
    骨髓MSC Smad7 慢病毒转染 im (3~5)×106 肝硬化 降低血清Ⅰ型和Ⅲ型胶原酶,抑制TGF-β1信号
    通路,减轻肝硬化
    31
    胎盘MSC PRL-1 慢病毒和非
    病毒转染
    iv 2×106 肝硬化 抗MSC凋亡,增强线粒体代谢 34
    脐带MSC VEGF165 腺病毒转染 iv 2×106 ALF 增加MSC归巢并促进肝再生 36
    脐带MSC CCR2 慢病毒转染 iv 1×106 ALF MSC向受损靶组织归巢增加并促进肝再生 37
    脐带MSC HNF4α 质粒 ip 2×106 ALF 促进M2巨噬细胞极化并减少炎症反应,改善肝
    衰竭
    38
    脐带MSC HNF4α 慢病毒转染 iv 1×106 HCC 通过下调 Wnt/β-catenin 信号通路减少肝癌细胞
    生长和转移,从而抑制HCC进展
    44
    脐带MSC sFlt-1 慢病毒 iv 6×105 HCC 抑制HCC小鼠模型中的肿瘤生长并延长生存期 43
    脂肪MSC-exo miR-4465 非病毒转染 iv 1×1012微粒/kg 肝纤维化 靶向LOXL2并抑制HSC激活,减轻肝纤维化 48
    脐带MSC-exo miR-27a-3p 非病毒转染 iv NA HCC 抑制肝癌细胞增殖、侵袭和转移 52
    脂肪MSC-exo miR-199a 慢病毒转染 iv 50 μg HCC 靶向mTOR通路,增加肝癌细胞对阿霉素敏感性 55

    注:iv,静脉注射;im,肌内注射;ip, 腹腔注射;LOXL2,赖氨酰氧化酶样蛋白2;NA,文中未提及。

    下载: 导出CSV
  • [1] DEVARBHAVI H, ASRANI SK, ARAB JP, et al. Global burden of liver disease: 2023 update[J]. J Hepatol, 2023, 79( 2): 516- 537. DOI: 10.1016/j.jhep.2023.03.017.
    [2] TERRAULT NA, FRANCOZ C, BERENGUER M, et al. Liver transplantation 2023: Status report, current and future challenges[J]. Clin Gastroenterol Hepatol, 2023, 21( 8): 2150- 2166. DOI: 10.1016/j.cgh.2023.04.005.
    [3] YADAV P, SINGH SK, RAJPUT S, et al. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: Current perspectives and future challenges[J]. Pharmacol Ther, 2024, 253: 108563. DOI: 10.1016/j.pharmthera.2023.108563.
    [4] SANI F, SANI M, MOAYEDFARD Z, et al. Potential advantages of genetically modified mesenchymal stem cells in the treatment of acute and chronic liver diseases[J]. Stem Cell Res Ther, 2023, 14( 1): 138. DOI: 10.1186/s13287-023-03364-x.
    [5] TAHA EA, LEE J, HOTTA A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges[J]. J Control Release, 2022, 342: 345- 361. DOI: 10.1016/j.jconrel.2022.01.013.
    [6] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337( 6096): 816- 821. DOI: 10.1126/science.1225829.
    [7] CUSHMAN-VOKOUN A, SCHMIDT RJ, HIEMENZ MC, et al. A primer on gene editing[J]. Arch Pathol Lab Med, 2023. DOI: 10.5858/arpa.2022-0410-CP.[ Epub ahead of print]
    [8] ADLAT S, VÁZQUEZ SALGADO AM, LEE M, et al. Emerging and potential use of CRISPR in human liver disease[J]. Hepatology, 2023. DOI: 10.1097/HEP.0000000000000578.[ Online ahead of print]
    [9] LONGHURST HJ, LINDSAY K, PETERSEN RS, et al. CRISPR-Cas9 in vivo gene editing of KLKB1 for hereditary angioedema[J]. N Engl J Med, 2024, 390( 5): 432- 441. DOI: 10.1056/NEJMoa2309149.
    [10] PIERCE EA, ALEMAN TS, JAYASUNDERA KT, et al. Gene editing for CEP290-associated retinal degeneration[J]. N Engl J Med, 2024, 390( 21): 1972- 1984. DOI: 10.1056/NEJMoa2309915.
    [11] FERRARI S, VALERI E, CONTI A, et al. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy[J]. Cell Stem Cell, 2023, 30( 5): 549- 570. DOI: 10.1016/j.stem.2023.04.014.
    [12] CHANCELLOR D, BARRETT D, NGUYEN-JATKOE L, et al. The state of cell and gene therapy in 2023[J]. Mol Ther, 2023, 31( 12): 3376- 3388. DOI: 10.1016/j.ymthe.2023.11.001.
    [13] ISHII T, ETO K. Fetal stem cell transplantation: Past, present, and future[J]. World J Stem Cells, 2014, 6( 4): 404- 420. DOI: 10.4252/wjsc.v6.i4.404.
    [14] KLOPP AH, GUPTA A, SPAETH E, et al. Concise review: Dissecting a discrepancy in the literature: Do mesenchymal stem cells support or suppress tumor growth?[J]. Stem Cells, 2011, 29( 1): 11- 19. DOI: 10.1002/stem.559.
    [15] KIMBREL EA, LANZA R. Next-generation stem cells: Ushering in a new era of cell-based therapies[J]. Nat Rev Drug Discov, 2020, 19( 7): 463- 479. DOI: 10.1038/s41573-020-0064-x.
    [16] HAMANN A, PANNIER AK. Innovative nonviral gene delivery strategies for engineering human mesenchymal stem cell phenotypes toward clinical applications[J]. Curr Opin Biotechnol, 2022, 78: 102819. DOI: 10.1016/j.copbio.2022.102819.
    [17] MENG X, ZHENG MJ, YU M, et al. Transplantation of CRISPRa system engineered IL10-overexpressing bone marrow-derived mesenchymal stem cells for the treatment of myocardial infarction in diabetic mice[J]. J Biol Eng, 2019, 13: 49. DOI: 10.1186/s13036-019-0163-6.
    [18] LI J, TAO T, XU J, et al. HIF-1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia-reperfusion injury in a rat MCAO model[J]. Int J Mol Med, 2020, 45( 4): 1027- 1036. DOI: 10.3892/ijmm.2020.4480.
    [19] WANG XY, WANG HZ, LU JH, et al. Erythropoietin-modified mesenchymal stem cells enhance anti-fibrosis efficacy in mouse liver fibrosis model[J]. Tissue Eng Regen Med, 2020, 17( 5): 683- 693. DOI: 10.1007/s13770-020-00276-2.
    [20] SHAHROR RA, LINARES GR, WANG Y, et al. Transplantation of mesenchymal stem cells overexpressing fibroblast growth factor 21 facilitates cognitive recovery and enhances neurogenesis in a mouse model of traumatic brain injury[J]. J Neurotrauma, 2020, 37( 1): 14- 26. DOI: 10.1089/neu.2019.6422.
    [21] HUAI Q, ZHU C, ZHANG X, et al. Mesenchymal stem/stromal cells armored by FGF21 ameliorate alcohol-induced liver injury through modulating polarization of macrophages[J]. Hepatol Commun, 2024, 8( 4): e0410. DOI: 10.1097/HC9.0000000000000410.
    [22] BYUN CS, HWANG S, WOO SH, et al. Adipose tissue-derived mesenchymal stem cells suppress growth of Huh7 hepatocellular carcinoma cells via interferon(IFN)-β-mediated JAK/STAT1 pathway in vitro[J]. Int J Med Sci, 2020, 17( 5): 609- 619. DOI: 10.7150/ijms.41354.
    [23] VIGO T, LA ROCCA C, FAICCHIA D, et al. IFNβ enhances mesenchymal stromal(Stem) cells immunomodulatory function through STAT1-3 activation and mTOR-associated promotion of glucose metabolism[J]. Cell Death Dis, 2019, 10( 2): 85. DOI: 10.1038/s41419-019-1336-4.
    [24] HWANG S, EOM YW, KANG SH, et al. IFN-β overexpressing adipose-derived mesenchymal stem cells mitigate alcohol-induced liver damage and gut permeability[J]. Int J Mol Sci, 2024, 25( 15): 8509. DOI: 10.3390/ijms25158509.
    [25] MORRIS AB, FARLEY CR, PINELLI DF, et al. Signaling through the inhibitory Fc receptor FcγRIIB induces CD8+ T cell apoptosis to limit T cell immunity[J]. Immunity, 2020, 52( 1): 136- 150. e 6. DOI: 10.1016/j.immuni.2019.12.006.
    [26] JI WB, WANG WW, LI PY, et al. sFgl2 gene-modified MSCs regulate the differentiation of CD4+ T cells in the treatment of autoimmune hepatitis[J]. Stem Cell Res Ther, 2023, 14( 1): 316. DOI: 10.1186/s13287-023-03550-x.
    [27] PUCHE JE, SAIMAN Y, FRIEDMAN SL. Hepatic stellate cells and liver fibrosis[J]. Compr Physiol, 2013, 3( 4): 1473- 1492. DOI: 10.1002/cphy.c120035.
    [28] FAN WG, LIU TH, CHEN W, et al. ECM1 prevents activation of transforming growth factor β, hepatic stellate cells, and fibrogenesis in mice[J]. Gastroenterology, 2019, 157( 5): 1352- 1367. e 13. DOI: 10.1053/j.gastro.2019.07.036.
    [29] LIU Q, LV CQ, HUANG QQ, et al. ECM1 modified HF-MSCs targeting HSC attenuate liver cirrhosis by inhibiting the TGF-β/Smad signaling pathway[J]. Cell Death Discov, 2022, 8( 1): 51. DOI: 10.1038/s41420-022-00846-4.
    [30] DOOLEY S, HAMZAVI J, BREITKOPF K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats[J]. Gastroenterology, 2003, 125( 1): 178- 191. DOI: 10.1016/s0016-5085(03)00666-8.
    [31] SU DN, WU SP, XU SZ. Mesenchymal stem cell-based Smad7 gene therapy for experimental liver cirrhosis[J]. Stem Cell Res Ther, 2020, 11( 1): 395. DOI: 10.1186/s13287-020-01911-4.
    [32] RIOS P, LI X, KÖHN M. Molecular mechanisms of the PRL phosphatases[J]. FEBS J, 2013, 280( 2): 505- 524. DOI: 10.1111/j.1742-4658.2012.08565.x.
    [33] BAI YP, LUO Y, LIU SJ, et al. PRL-1 protein promotes ERK1/2 and RhoA protein activation through a non-canonical interaction with the Src homology 3 domain of p115 Rho GTPase-activating protein[J]. J Biol Chem, 2011, 286( 49): 42316- 42324. DOI: 10.1074/jbc.M111.286302.
    [34] KIM JY, CHOI JH, JUN JH, et al. Enhanced PRL-1 expression in placenta-derived mesenchymal stem cells accelerates hepatic function via mitochondrial dynamics in a cirrhotic rat model[J]. Stem Cell Res Ther, 2020, 11( 1): 512. DOI: 10.1186/s13287-020-02029-3.
    [35] ZAGOURA D, TROHATOU O, MAKRIDAKIS M, et al. Functional secretome analysis reveals Annexin-A1 as important paracrine factor derived from fetal mesenchymal stem cells in hepatic regeneration[J]. EBioMedicine, 2019, 45: 542- 552. DOI: 10.1016/j.ebiom.2019.07.009.
    [36] CHEN HO, TANG SG, LIAO JM, et al. VEGF165 gene-modified human umbilical cord blood mesenchymal stem cells protect against acute liver failure in rats[J]. J Gene Med, 2021, 23( 10): e3369. DOI: 10.1002/jgm.3369.
    [37] XU RX, NI BB, WANG L, et al. CCR2-overexpressing mesenchymal stem cells targeting damaged liver enhance recovery of acute liver failure[J]. Stem Cell Res Ther, 2022, 13( 1): 55. DOI: 10.1186/s13287-022-02729-y.
    [38] KONG DF, XU HM, CHEN M, et al. Co-encapsulation of HNF4α overexpressing UMSCs and human primary hepatocytes ameliorates mouse acute liver failure[J]. Stem Cell Res Ther, 2020, 11( 1): 449. DOI: 10.1186/s13287-020-01962-7.
    [39] FERNÁNDEZ M, SEMELA D, BRUIX J, et al. Angiogenesis in liver disease[J]. J Hepatol, 2009, 50( 3): 604- 620. DOI: 10.1016/j.jhep.2008.12.011.
    [40] RUMGAY H, ARNOLD M, FERLAY J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040[J]. J Hepatol, 2022, 77( 6): 1598- 1606. DOI: 10.1016/j.jhep.2022.08.021.
    [41] YAMAGUCHI R, YANO H, IEMURA A, et al. Expression of vascular endothelial growth factor in human hepatocellular carcinoma[J]. Hepatology, 1998, 28( 1): 68- 77. DOI: 10.1002/hep.510280111.
    [42] KRISHNAN B, TORTI FM, GALLAGHER PE, et al. Angiotensin-(1-7) reduces proliferation and angiogenesis of human prostate cancer xenografts with a decrease in angiogenic factors and an increase in sFlt-1[J]. Prostate, 2013, 73( 1): 60- 70. DOI: 10.1002/pros.22540.
    [43] LI GL, MIAO F, ZHU JH, et al. Anti-angiogenesis gene therapy for hepatocellular carcinoma via systemic injection of mesenchymal stem cells engineered to secrete soluble Flt-1[J]. Mol Med Rep, 2017, 16( 5): 5799- 5806. DOI: 10.3892/mmr.2017.7310.
    [44] WU N, ZHANG YL, WANG HT, et al. Overexpression of hepatocyte nuclear factor 4α in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/β-catenin signaling pathway downregulation[J]. Cancer Biol Ther, 2016, 17( 5): 558- 565. DOI: 10.1080/15384047.2016.1177675.
    [45] WANG XL, HE Y, MACKOWIAK B, et al. microRNAs as regulators, biomarkers and therapeutic targets in liver diseases[J]. Gut, 2021, 70( 4): 784- 795. DOI: 10.1136/gutjnl-2020-322526.
    [46] KISSELEVA T, BRENNER D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18( 3): 151- 166. DOI: 10.1038/s41575-020-00372-7.
    [47] CHEN W, YANG AT, JIA JD, et al. Lysyl oxidase(LOX) family members: Rationale and their potential as therapeutic targets for liver fibrosis[J]. Hepatology, 2020, 72( 2): 729- 741. DOI: 10.1002/hep.31236.
    [48] WANG YJ, CHEN YF, YANG FJ, et al. miR-4465-modified mesenchymal stem cell-derived small extracellular vesicles inhibit liver fibrosis development via targeting LOXL2 expression[J]. J Zhejiang Univ Sci B, 2024, 25( 7): 594- 604. DOI: 10.1631/jzus.B2300305.
    [49] LIU YJ, WANG JY, YANG RX, et al. GP73-mediated secretion of AFP and GP73 promotes proliferation and metastasis of hepatocellular carcinoma cells[J]. Oncogenesis, 2021, 10( 10): 69. DOI: 10.1038/s41389-021-00358-3.
    [50] HOU X, YANG L, JIANG XH, et al. Role of microRNA-141-3p in the progression and metastasis of hepatocellular carcinoma cell[J]. Int J Biol Macromol, 2019, 128: 331- 339. DOI: 10.1016/j.ijbiomac.2019.01.144.
    [51] GAI XC, TANG BF, LIU FM, et al. miR-27a is negatively regulated by mTOR and inhibits liver cancer cell invasion via targeting GP73[J]. Basic Clin Med, 2017, 37( 7): 1015- 1020. DOI: 10.3969/j.issn.1001-6325.2017.07.022.

    盖晓晨, 汤步富, 刘芳铭, 等. mTOR负调控miR-27a并通过靶向降低GP73抑制人肝癌细胞侵袭[J]. 基础医学与临床, 2017, 37( 7): 1015- 1020. DOI: 10.16352/j.issn.1001-6325.2017.07.020.
    [52] BONGOLO CC, THOKERUNGA E, YAN Q, et al. Exosomes derived from microRNA-27a-3p overexpressing mesenchymal stem cells inhibit the progression of liver cancer through suppression of Golgi membrane protein 1[J]. Stem Cells Int, 2022, 2022: 9748714. DOI: 10.1155/2022/9748714.
    [53] GIORDANO S, COLUMBANO A. microRNAs: New tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma?[J]. Hepatology, 2013, 57( 2): 840- 847. DOI: 10.1002/hep.26095.
    [54] CALLEGARI E, D’ABUNDO L, GUERRIERO P, et al. miR-199a-3p modulates MTOR and PAK4 pathways and inhibits tumor growth in a hepatocellular carcinoma transgenic mouse model[J]. Mol Ther Nucleic Acids, 2018, 11: 485- 493. DOI: 10.1016/j.omtn.2018.04.002.
    [55] LOU GH, CHEN L, XIA CX, et al. miR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway[J]. J Exp Clin Cancer Res, 2020, 39( 1): 4. DOI: 10.1186/s13046-019-1512-5.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  670
  • HTML全文浏览量:  152
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-25
  • 录用日期:  2024-12-04
  • 出版日期:  2025-06-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回