基因修饰间充质干细胞在肝脏疾病治疗中的应用价值
DOI: 10.12449/JCH250633
-
摘要: 间充质干细胞的免疫调节、修复和促再生功能使其成为肝脏疾病的潜在治疗方法之一。目前,已经开发出病毒和非病毒递送方法对间充质干细胞进行基因修饰,基因修饰可以促进间充质干细胞存活、归巢、分泌细胞因子等特性,增强间充质干细胞治疗肝脏疾病的能力。本文主要概述基因修饰间充质干细胞治疗肝脏疾病的研究进展,以期为肝脏疾病的临床治疗提供新的见解和策略。Abstract: The immunomodulatory, repair, and regeneration-promoting functions of mesenchymal stem cells make them one of the potential treatment methods for liver diseases. At present, viral and non-viral delivery methods have been developed to genetically modify mesenchymal stem cells, and gene modification can promote the survival, homing, and cytokine secretion of mesenchymal stem cells, thereby enhancing the ability of mesenchymal stem cells to treat liver diseases. This article mainly summarizes the research advances in gene-modified mesenchymal stem cells in the treatment of liver diseases, in order to provide new insights and strategies for the clinical treatment of liver diseases.
-
Key words:
- Mesenchymal Stem Cells /
- Organisms, Genetically Modified /
- Liver Disease /
- Therapeutics
-
表 1 基因修饰的MSC在肝病中的应用
Table 1. Application of gene-modified mesenchymal stem cells in liver diseases
干细胞 基因 基因编辑
方式给药
方式剂量 疾病模型 结果 文献 毛囊MSC ECM1 慢病毒转染 iv 1×106 肝硬化 抑制HSC活化,减轻肝硬化 [29] 骨髓MSC Smad7 慢病毒转染 im (3~5)×106 肝硬化 降低血清Ⅰ型和Ⅲ型胶原酶,抑制TGF-β1信号
通路,减轻肝硬化[31] 胎盘MSC PRL-1 慢病毒和非
病毒转染iv 2×106 肝硬化 抗MSC凋亡,增强线粒体代谢 [34] 脐带MSC VEGF165 腺病毒转染 iv 2×106 ALF 增加MSC归巢并促进肝再生 [36] 脐带MSC CCR2 慢病毒转染 iv 1×106 ALF MSC向受损靶组织归巢增加并促进肝再生 [37] 脐带MSC HNF4α 质粒 ip 2×106 ALF 促进M2巨噬细胞极化并减少炎症反应,改善肝
衰竭[38] 脐带MSC HNF4α 慢病毒转染 iv 1×106 HCC 通过下调 Wnt/β-catenin 信号通路减少肝癌细胞
生长和转移,从而抑制HCC进展[44] 脐带MSC sFlt-1 慢病毒 iv 6×105 HCC 抑制HCC小鼠模型中的肿瘤生长并延长生存期 [43] 脂肪MSC-exo miR-4465 非病毒转染 iv 1×1012微粒/kg 肝纤维化 靶向LOXL2并抑制HSC激活,减轻肝纤维化 [48] 脐带MSC-exo miR-27a-3p 非病毒转染 iv NA HCC 抑制肝癌细胞增殖、侵袭和转移 [52] 脂肪MSC-exo miR-199a 慢病毒转染 iv 50 μg HCC 靶向mTOR通路,增加肝癌细胞对阿霉素敏感性 [55] 注:iv,静脉注射;im,肌内注射;ip, 腹腔注射;LOXL2,赖氨酰氧化酶样蛋白2;NA,文中未提及。
-
[1] DEVARBHAVI H, ASRANI SK, ARAB JP, et al. Global burden of liver disease: 2023 update[J]. J Hepatol, 2023, 79( 2): 516- 537. DOI: 10.1016/j.jhep.2023.03.017. [2] TERRAULT NA, FRANCOZ C, BERENGUER M, et al. Liver transplantation 2023: Status report, current and future challenges[J]. Clin Gastroenterol Hepatol, 2023, 21( 8): 2150- 2166. DOI: 10.1016/j.cgh.2023.04.005. [3] YADAV P, SINGH SK, RAJPUT S, et al. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: Current perspectives and future challenges[J]. Pharmacol Ther, 2024, 253: 108563. DOI: 10.1016/j.pharmthera.2023.108563. [4] SANI F, SANI M, MOAYEDFARD Z, et al. Potential advantages of genetically modified mesenchymal stem cells in the treatment of acute and chronic liver diseases[J]. Stem Cell Res Ther, 2023, 14( 1): 138. DOI: 10.1186/s13287-023-03364-x. [5] TAHA EA, LEE J, HOTTA A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges[J]. J Control Release, 2022, 342: 345- 361. DOI: 10.1016/j.jconrel.2022.01.013. [6] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337( 6096): 816- 821. DOI: 10.1126/science.1225829. [7] CUSHMAN-VOKOUN A, SCHMIDT RJ, HIEMENZ MC, et al. A primer on gene editing[J]. Arch Pathol Lab Med, 2023. DOI: 10.5858/arpa.2022-0410-CP.[ Epub ahead of print] [8] ADLAT S, VÁZQUEZ SALGADO AM, LEE M, et al. Emerging and potential use of CRISPR in human liver disease[J]. Hepatology, 2023. DOI: 10.1097/HEP.0000000000000578.[ Online ahead of print] [9] LONGHURST HJ, LINDSAY K, PETERSEN RS, et al. CRISPR-Cas9 in vivo gene editing of KLKB1 for hereditary angioedema[J]. N Engl J Med, 2024, 390( 5): 432- 441. DOI: 10.1056/NEJMoa2309149. [10] PIERCE EA, ALEMAN TS, JAYASUNDERA KT, et al. Gene editing for CEP290-associated retinal degeneration[J]. N Engl J Med, 2024, 390( 21): 1972- 1984. DOI: 10.1056/NEJMoa2309915. [11] FERRARI S, VALERI E, CONTI A, et al. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy[J]. Cell Stem Cell, 2023, 30( 5): 549- 570. DOI: 10.1016/j.stem.2023.04.014. [12] CHANCELLOR D, BARRETT D, NGUYEN-JATKOE L, et al. The state of cell and gene therapy in 2023[J]. Mol Ther, 2023, 31( 12): 3376- 3388. DOI: 10.1016/j.ymthe.2023.11.001. [13] ISHII T, ETO K. Fetal stem cell transplantation: Past, present, and future[J]. World J Stem Cells, 2014, 6( 4): 404- 420. DOI: 10.4252/wjsc.v6.i4.404. [14] KLOPP AH, GUPTA A, SPAETH E, et al. Concise review: Dissecting a discrepancy in the literature: Do mesenchymal stem cells support or suppress tumor growth?[J]. Stem Cells, 2011, 29( 1): 11- 19. DOI: 10.1002/stem.559. [15] KIMBREL EA, LANZA R. Next-generation stem cells: Ushering in a new era of cell-based therapies[J]. Nat Rev Drug Discov, 2020, 19( 7): 463- 479. DOI: 10.1038/s41573-020-0064-x. [16] HAMANN A, PANNIER AK. Innovative nonviral gene delivery strategies for engineering human mesenchymal stem cell phenotypes toward clinical applications[J]. Curr Opin Biotechnol, 2022, 78: 102819. DOI: 10.1016/j.copbio.2022.102819. [17] MENG X, ZHENG MJ, YU M, et al. Transplantation of CRISPRa system engineered IL10-overexpressing bone marrow-derived mesenchymal stem cells for the treatment of myocardial infarction in diabetic mice[J]. J Biol Eng, 2019, 13: 49. DOI: 10.1186/s13036-019-0163-6. [18] LI J, TAO T, XU J, et al. HIF-1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia-reperfusion injury in a rat MCAO model[J]. Int J Mol Med, 2020, 45( 4): 1027- 1036. DOI: 10.3892/ijmm.2020.4480. [19] WANG XY, WANG HZ, LU JH, et al. Erythropoietin-modified mesenchymal stem cells enhance anti-fibrosis efficacy in mouse liver fibrosis model[J]. Tissue Eng Regen Med, 2020, 17( 5): 683- 693. DOI: 10.1007/s13770-020-00276-2. [20] SHAHROR RA, LINARES GR, WANG Y, et al. Transplantation of mesenchymal stem cells overexpressing fibroblast growth factor 21 facilitates cognitive recovery and enhances neurogenesis in a mouse model of traumatic brain injury[J]. J Neurotrauma, 2020, 37( 1): 14- 26. DOI: 10.1089/neu.2019.6422. [21] HUAI Q, ZHU C, ZHANG X, et al. Mesenchymal stem/stromal cells armored by FGF21 ameliorate alcohol-induced liver injury through modulating polarization of macrophages[J]. Hepatol Commun, 2024, 8( 4): e0410. DOI: 10.1097/HC9.0000000000000410. [22] BYUN CS, HWANG S, WOO SH, et al. Adipose tissue-derived mesenchymal stem cells suppress growth of Huh7 hepatocellular carcinoma cells via interferon(IFN)-β-mediated JAK/STAT1 pathway in vitro[J]. Int J Med Sci, 2020, 17( 5): 609- 619. DOI: 10.7150/ijms.41354. [23] VIGO T, LA ROCCA C, FAICCHIA D, et al. IFNβ enhances mesenchymal stromal(Stem) cells immunomodulatory function through STAT1-3 activation and mTOR-associated promotion of glucose metabolism[J]. Cell Death Dis, 2019, 10( 2): 85. DOI: 10.1038/s41419-019-1336-4. [24] HWANG S, EOM YW, KANG SH, et al. IFN-β overexpressing adipose-derived mesenchymal stem cells mitigate alcohol-induced liver damage and gut permeability[J]. Int J Mol Sci, 2024, 25( 15): 8509. DOI: 10.3390/ijms25158509. [25] MORRIS AB, FARLEY CR, PINELLI DF, et al. Signaling through the inhibitory Fc receptor FcγRIIB induces CD8+ T cell apoptosis to limit T cell immunity[J]. Immunity, 2020, 52( 1): 136- 150. e 6. DOI: 10.1016/j.immuni.2019.12.006. [26] JI WB, WANG WW, LI PY, et al. sFgl2 gene-modified MSCs regulate the differentiation of CD4+ T cells in the treatment of autoimmune hepatitis[J]. Stem Cell Res Ther, 2023, 14( 1): 316. DOI: 10.1186/s13287-023-03550-x. [27] PUCHE JE, SAIMAN Y, FRIEDMAN SL. Hepatic stellate cells and liver fibrosis[J]. Compr Physiol, 2013, 3( 4): 1473- 1492. DOI: 10.1002/cphy.c120035. [28] FAN WG, LIU TH, CHEN W, et al. ECM1 prevents activation of transforming growth factor β, hepatic stellate cells, and fibrogenesis in mice[J]. Gastroenterology, 2019, 157( 5): 1352- 1367. e 13. DOI: 10.1053/j.gastro.2019.07.036. [29] LIU Q, LV CQ, HUANG QQ, et al. ECM1 modified HF-MSCs targeting HSC attenuate liver cirrhosis by inhibiting the TGF-β/Smad signaling pathway[J]. Cell Death Discov, 2022, 8( 1): 51. DOI: 10.1038/s41420-022-00846-4. [30] DOOLEY S, HAMZAVI J, BREITKOPF K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats[J]. Gastroenterology, 2003, 125( 1): 178- 191. DOI: 10.1016/s0016-5085(03)00666-8. [31] SU DN, WU SP, XU SZ. Mesenchymal stem cell-based Smad7 gene therapy for experimental liver cirrhosis[J]. Stem Cell Res Ther, 2020, 11( 1): 395. DOI: 10.1186/s13287-020-01911-4. [32] RIOS P, LI X, KÖHN M. Molecular mechanisms of the PRL phosphatases[J]. FEBS J, 2013, 280( 2): 505- 524. DOI: 10.1111/j.1742-4658.2012.08565.x. [33] BAI YP, LUO Y, LIU SJ, et al. PRL-1 protein promotes ERK1/2 and RhoA protein activation through a non-canonical interaction with the Src homology 3 domain of p115 Rho GTPase-activating protein[J]. J Biol Chem, 2011, 286( 49): 42316- 42324. DOI: 10.1074/jbc.M111.286302. [34] KIM JY, CHOI JH, JUN JH, et al. Enhanced PRL-1 expression in placenta-derived mesenchymal stem cells accelerates hepatic function via mitochondrial dynamics in a cirrhotic rat model[J]. Stem Cell Res Ther, 2020, 11( 1): 512. DOI: 10.1186/s13287-020-02029-3. [35] ZAGOURA D, TROHATOU O, MAKRIDAKIS M, et al. Functional secretome analysis reveals Annexin-A1 as important paracrine factor derived from fetal mesenchymal stem cells in hepatic regeneration[J]. EBioMedicine, 2019, 45: 542- 552. DOI: 10.1016/j.ebiom.2019.07.009. [36] CHEN HO, TANG SG, LIAO JM, et al. VEGF165 gene-modified human umbilical cord blood mesenchymal stem cells protect against acute liver failure in rats[J]. J Gene Med, 2021, 23( 10): e3369. DOI: 10.1002/jgm.3369. [37] XU RX, NI BB, WANG L, et al. CCR2-overexpressing mesenchymal stem cells targeting damaged liver enhance recovery of acute liver failure[J]. Stem Cell Res Ther, 2022, 13( 1): 55. DOI: 10.1186/s13287-022-02729-y. [38] KONG DF, XU HM, CHEN M, et al. Co-encapsulation of HNF4α overexpressing UMSCs and human primary hepatocytes ameliorates mouse acute liver failure[J]. Stem Cell Res Ther, 2020, 11( 1): 449. DOI: 10.1186/s13287-020-01962-7. [39] FERNÁNDEZ M, SEMELA D, BRUIX J, et al. Angiogenesis in liver disease[J]. J Hepatol, 2009, 50( 3): 604- 620. DOI: 10.1016/j.jhep.2008.12.011. [40] RUMGAY H, ARNOLD M, FERLAY J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040[J]. J Hepatol, 2022, 77( 6): 1598- 1606. DOI: 10.1016/j.jhep.2022.08.021. [41] YAMAGUCHI R, YANO H, IEMURA A, et al. Expression of vascular endothelial growth factor in human hepatocellular carcinoma[J]. Hepatology, 1998, 28( 1): 68- 77. DOI: 10.1002/hep.510280111. [42] KRISHNAN B, TORTI FM, GALLAGHER PE, et al. Angiotensin-(1-7) reduces proliferation and angiogenesis of human prostate cancer xenografts with a decrease in angiogenic factors and an increase in sFlt-1[J]. Prostate, 2013, 73( 1): 60- 70. DOI: 10.1002/pros.22540. [43] LI GL, MIAO F, ZHU JH, et al. Anti-angiogenesis gene therapy for hepatocellular carcinoma via systemic injection of mesenchymal stem cells engineered to secrete soluble Flt-1[J]. Mol Med Rep, 2017, 16( 5): 5799- 5806. DOI: 10.3892/mmr.2017.7310. [44] WU N, ZHANG YL, WANG HT, et al. Overexpression of hepatocyte nuclear factor 4α in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/β-catenin signaling pathway downregulation[J]. Cancer Biol Ther, 2016, 17( 5): 558- 565. DOI: 10.1080/15384047.2016.1177675. [45] WANG XL, HE Y, MACKOWIAK B, et al. microRNAs as regulators, biomarkers and therapeutic targets in liver diseases[J]. Gut, 2021, 70( 4): 784- 795. DOI: 10.1136/gutjnl-2020-322526. [46] KISSELEVA T, BRENNER D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18( 3): 151- 166. DOI: 10.1038/s41575-020-00372-7. [47] CHEN W, YANG AT, JIA JD, et al. Lysyl oxidase(LOX) family members: Rationale and their potential as therapeutic targets for liver fibrosis[J]. Hepatology, 2020, 72( 2): 729- 741. DOI: 10.1002/hep.31236. [48] WANG YJ, CHEN YF, YANG FJ, et al. miR-4465-modified mesenchymal stem cell-derived small extracellular vesicles inhibit liver fibrosis development via targeting LOXL2 expression[J]. J Zhejiang Univ Sci B, 2024, 25( 7): 594- 604. DOI: 10.1631/jzus.B2300305. [49] LIU YJ, WANG JY, YANG RX, et al. GP73-mediated secretion of AFP and GP73 promotes proliferation and metastasis of hepatocellular carcinoma cells[J]. Oncogenesis, 2021, 10( 10): 69. DOI: 10.1038/s41389-021-00358-3. [50] HOU X, YANG L, JIANG XH, et al. Role of microRNA-141-3p in the progression and metastasis of hepatocellular carcinoma cell[J]. Int J Biol Macromol, 2019, 128: 331- 339. DOI: 10.1016/j.ijbiomac.2019.01.144. [51] GAI XC, TANG BF, LIU FM, et al. miR-27a is negatively regulated by mTOR and inhibits liver cancer cell invasion via targeting GP73[J]. Basic Clin Med, 2017, 37( 7): 1015- 1020. DOI: 10.3969/j.issn.1001-6325.2017.07.022.盖晓晨, 汤步富, 刘芳铭, 等. mTOR负调控miR-27a并通过靶向降低GP73抑制人肝癌细胞侵袭[J]. 基础医学与临床, 2017, 37( 7): 1015- 1020. DOI: 10.16352/j.issn.1001-6325.2017.07.020. [52] BONGOLO CC, THOKERUNGA E, YAN Q, et al. Exosomes derived from microRNA-27a-3p overexpressing mesenchymal stem cells inhibit the progression of liver cancer through suppression of Golgi membrane protein 1[J]. Stem Cells Int, 2022, 2022: 9748714. DOI: 10.1155/2022/9748714. [53] GIORDANO S, COLUMBANO A. microRNAs: New tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma?[J]. Hepatology, 2013, 57( 2): 840- 847. DOI: 10.1002/hep.26095. [54] CALLEGARI E, D’ABUNDO L, GUERRIERO P, et al. miR-199a-3p modulates MTOR and PAK4 pathways and inhibits tumor growth in a hepatocellular carcinoma transgenic mouse model[J]. Mol Ther Nucleic Acids, 2018, 11: 485- 493. DOI: 10.1016/j.omtn.2018.04.002. [55] LOU GH, CHEN L, XIA CX, et al. miR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway[J]. J Exp Clin Cancer Res, 2020, 39( 1): 4. DOI: 10.1186/s13046-019-1512-5. -

PDF下载 ( 1231 KB)
下载:
