中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表观遗传学在瘦型非酒精性脂肪性肝病中的作用及临床应用前景

徐俊姣 刘素彤 张琪振 管雅捷 崔蓓蕾 吴文静 刘鸣昊

引用本文:
Citation:

表观遗传学在瘦型非酒精性脂肪性肝病中的作用及临床应用前景

DOI: 10.12449/JCH250624
基金项目: 

国家自然科学基金 (81904154);

国家自然科学基金 (82205086);

河南省科技攻关计划 (242102310500);

河南省“双一流”创建学科中医学科学研究专项 (HSRP-DFCTCM-2023-1-10)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:徐俊姣负责起草和撰写论文;刘素彤负责设计并讨论文章框架;张琪振、管雅捷、崔蓓蕾、吴文静负责关键内容的修改;刘鸣昊负责指导撰写文章并最后定稿。
详细信息
    通信作者:

    刘鸣昊, liumh015@163.com (ORCID: 0009-0001-7712-4605)

Role and clinical application prospect of epigenetics in lean nonalcoholic fatty liver disease

Research funding: 

National Natural Science Foundation of China (81904154);

National Natural Science Foundation of China (82205086);

Science and Technology Key Project of Henan Province (242102310500);

Special Research Project for Traditional Chinese Medicine Science in Henan Province’s “Double First Class” Creation Discipline (HSRP-DFCTCM-2023-1-10)

More Information
    Corresponding author: LIU Minghao, liumh015@163.com (ORCID: 0009-0001-7712-4605)
  • 摘要: 表观遗传学机制在非酒精性脂肪性肝病(NAFLD)的发生、发展中扮演着至关重要的角色,尤其是在瘦人群体中,相关表观遗传学机制的研究为揭示NAFLD的潜在病因和治疗策略提供了新的线索和方向。本文介绍了近年表观遗传学在瘦型NAFLD发展中的作用,分析了瘦型NAFLD表观遗传学方面的最新研究进展,简述了表观遗传学的基本概念,包括DNA甲基化、组蛋白修饰和非编码RNA调控,并探讨了表观遗传学改变如何影响瘦型NAFLD的发病机制、疾病进展以及治疗策略。

     

  • 图  1  表观遗传学改变脂质代谢和炎症反应的机制

    Figure  1.  Epigenetic changes in lipid metabolism and inflammatory response mechanisms diagram

    表  1  非瘦型NAFLD与瘦型NAFLD两种分型的区别

    Table  1.   The difference between the two types of non-lean NAFLD and lean NAFLD

    项目 非瘦型NAFLD 瘦型NAFLD 1型 瘦型NAFLD 2型
    BMI(亚洲人群标准) >27.5 kg/m2 <23 kg/m2,但以腰围或其他身
    体成分可能衡量为肥胖
    BMI处于瘦人范畴,且无
    内脏肥胖
    主要发病机制 胰岛素抵抗和脂肪代谢紊乱、氧化应激和脂质
    过氧化、炎症反应和免疫失调、肠道菌群失调
    内脏肥胖和胰岛素抵抗 单基因疾病导致
    主要病理改变 单纯脂肪肝:肝细胞大量脂滴积累,无明显肝细
    胞损伤;NASH:肝细胞明显损伤和炎细胞浸润;
    肝纤维化和肝硬化:肝细胞正常结构严重破坏,
    假小叶形成,伴有广泛肝纤维化
    脂肪变性、(严重)代谢异常:血
    脂异常、空腹血糖上升等,易出
    现炎症和肝纤维化,进而发展
    为肝硬化
    脂肪变性(较1型轻)、代
    谢异常(较1型轻):血脂
    异常、空腹血糖上升等,遗
    传基因变异
    下载: 导出CSV
  • [1] LIU MH, LIU ST, ZHANG LH, et al. Mechanism of ferroptosis in the formation of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis[J]. J Clin Hepatol, 2022, 38( 5): 1152- 1155. DOI: 10.3969/j.issn.1001-5256.2022.05.037.

    刘鸣昊, 刘素彤, 张丽慧, 等. 铁死亡的发生机制及其在非酒精性脂肪性肝病/非酒精性脂肪性肝炎发生发展中的作用[J]. 临床肝胆病杂志, 2022, 38( 5): 1152- 1155. DOI: 10.3969/j.issn.1001-5256.2022.05.037.
    [2] RONG L, ZOU JY, RAN W, et al. Advancements in the treatment of non-alcoholic fatty liver disease(NAFLD)[J]. Front Endocrinol(Lausanne), 2023, 13: 1087260. DOI: 10.3389/fendo.2022.1087260.
    [3] RIAZI K, AZHARI H, CHARETTE JH, et al. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2022, 7( 9): 851- 861. DOI: 10.1016/S2468-1253(22)00165-0.
    [4] YOUNOSSI ZM, STEPANOVA M, ONG J, et al. Nonalcoholic steatohepatitis is the most rapidly increasing indication for liver transplantation in the United States[J]. Clin Gastroenterol Hepatol, 2021, 19( 3): 580- 589. DOI: 10.1016/j.cgh.2020.05.064.
    [5] HE SH, DAI L, ZHENG J, et al. Therapeutic effect of low-carbohydrate diet and lifestyle intervention on patients with lean nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2024, 40( 5): 946- 951. DOI: 10.12449/JCH240513.

    何诗华, 戴璐, 郑洁, 等. 低碳水化合物饮食和生活方式干预对瘦型非酒精性脂肪性肝病患者的疗效观察[J]. 临床肝胆病杂志, 2024, 40( 5): 946- 951. DOI: 10.12449/JCH240513.
    [6] GOLABI P, PAIK J, FUKUI N, et al. Patients with lean nonalcoholic fatty liver disease are metabolically abnormal and have a higher risk for mortality[J]. Clin Diabetes, 2019, 37( 1): 65- 72. DOI: 10.2337/cd18-0026.
    [7] NABI O, LAPIDUS N, BOURSIER J, et al. Lean individuals with NAFLD have more severe liver disease and poorer clinical outcomes(NASH-CO Study)[J]. Hepatology, 2023, 78( 1): 272- 283. DOI: 10.1097/HEP.0000000000000329.
    [8] SU YS, CHEN YW. AGA clinical practice update: diagnosis and management of nonalcoholic fatty liver disease in lean individuals: expert review[J]. Chin J Gastroenterol Hepatol, 2024, 33( 3): 324- 331. DOI: 10.3969/j.issn.1006-5709.2024.03.018.

    苏殷实, 陈源文. AGA临床实践指南更新: 瘦型NAFLD的诊断和管理(专家评议)[J]. 胃肠病学和肝病学杂志, 2024, 33( 3): 324- 331. DOI: 10.3969/j.issn.1006-5709.2024.03.018.
    [9] FAHIM SM, CHOWDHURY MAB, ALAM S. Non-alcoholic fatty liver disease(NAFLD) among underweight adults[J]. Clin Nutr ESPEN, 2020, 38: 80- 85. DOI: 10.1016/j.clnesp.2020.06.002.
    [10] VILARINHO S, AJMERA V, ZHENG M, et al. Emerging role of genomic analysis in clinical evaluation of lean individuals with NAFLD[J]. Hepatology, 2021, 74( 4): 2241- 2250. DOI: 10.1002/hep.32047.
    [11] XU RH, PAN JS, ZHOU WJ, et al. Recent advances in lean NAFLD[J]. Biomed Pharmacother, 2022, 153: 113331. DOI: 10.1016/j.biopha.2022.113331.
    [12] CHAHAL D, SHARMA D, KESHAVARZI S, et al. Distinctive clinical and genetic features of lean vs overweight fatty liver disease using the UK Biobank[J]. Hepatol Int, 2022, 16( 2): 325- 336. DOI: 10.1007/s12072-022-10304-z.
    [13] ISAC T, ISAC S, RABABOC R, et al. Epigenetics in inflammatory liver diseases: A clinical perspective(Review)[J]. Exp Ther Med, 2022, 23( 5): 366. DOI: 10.3892/etm.2022.11293.
    [14] SHI YC, ZHANG HJ, HUANG SL, et al. Epigenetic regulation in cardiovascular disease: Mechanisms and advances in clinical trials[J]. Signal Transduct Target Ther, 2022, 7( 1): 200. DOI: 10.1038/s41392-022-01055-2.
    [15] MOORE LD, LE T, FAN GP. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38( 1): 23- 38. DOI: 10.1038/npp.2012.112.
    [16] YANG ZH, DANG YQ, JI G. Role of epigenetics in transformation of inflammation into colorectal cancer[J]. World J Gastroenterol, 2019, 25( 23): 2863- 2877. DOI: 10.3748/wjg.v25.i23.2863.
    [17] GONZÁLEZ-BENGTSSON A, ASADI A, GAO H, et al. Estrogen enhances the expression of the polyunsaturated fatty acid elongase Elovl2 via ERα in breast cancer cells[J]. PLoS One, 2016, 11( 10): e0164241. DOI: 10.1371/journal.pone.0164241.
    [18] LI X, WANG JQ, WANG LY, et al. Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging[J]. Signal Transduct Target Ther, 2022, 7( 1): 162. DOI: 10.1038/s41392-022-00964-6.
    [19] PAUTER AM, OLSSON P, ASADI A, et al. Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice[J]. J Lipid Res, 2014, 55( 4): 718- 728. DOI: 10.1194/jlr.M046151.
    [20] LI X, LI XD. Integrative chemical biology approaches to deciphering the histone code: A problem-driven journey[J]. Acc Chem Res, 2021, 54( 19): 3734- 3747. DOI: 10.1021/acs.accounts.1c00463.
    [21] GIALLONGO S, LO RE O, LOCHMANOVÁ G, et al. Phosphorylation within intrinsic disordered region discriminates histone variant macroH2A1 splicing isoforms-macroH2A1.1 and macroH2A1.2[J]. Biology(Basel), 2021, 10( 7): 659. DOI: 10.3390/biology10070659.
    [22] BUZOVA D, MAUGERI A, LIGUORI A, et al. Circulating histone signature of human lean metabolic-associated fatty liver disease(MAFLD)[J]. Clin Epigenetics, 2020, 12( 1): 126. DOI: 10.1186/s13148-020-00917-2.
    [23] HOLOCH D, MOAZED D. RNA-mediated epigenetic regulation of gene expression[J]. Nat Rev Genet, 2015, 16( 2): 71- 84. DOI: 10.1038/nrg3863.
    [24] AMERIKANOU C, PAPADA E, GIOXARI A, et al. Mastiha has efficacy in immune-mediated inflammatory diseases through a microRNA-155 Th17 dependent action[J]. Pharmacol Res, 2021, 171: 105753. DOI: 10.1016/j.phrs.2021.105753.
    [25] SHEN N, TANG L, QIAN YF, et al. Serum miR-4488 as a potential biomarker of lean nonalcoholic fatty liver disease[J]. Ann Transl Med, 2023, 11( 4): 173. DOI: 10.21037/atm-22-6620.
    [26] DAI L, XU JJ, LIU BC, et al. Lingguizhugan Decoction, a Chinese herbal formula, improves insulin resistance in overweight/obese subjects with non-alcoholic fatty liver disease: A translational approach[J]. Front Med, 2022, 16( 5): 745- 759. DOI: 10.1007/s11684-021-0880-3.
    [27] HYMEL E, FISHER KW, FARAZI PA. Differential methylation patterns in lean and obese non-alcoholic steatohepatitis-associated hepatocellular carcinoma[J]. BMC Cancer, 2022, 22( 1): 1276. DOI: 10.1186/s12885-022-10389-7.
    [28] LI DD, LIU Y, XUE L, et al. Up-regulation of microRNA-367 promotes liver steatosis through repressing TBL1 in obese mice[J]. Eur Rev Med Pharmacol Sci, 2017, 21( 7): 1598- 1603.
    [29] LI JY, XIN YG, LI JY, et al. Phosphatidylethanolamine N-methyltransferase: From functions to diseases[J]. Aging Dis, 2023, 14( 3): 879- 891. DOI: 10.14336/AD.2022.1025.
    [30] BALE G, VISHNUBHOTLA RV, MITNALA S, et al. Whole-exome sequencing identifies a variant in phosphatidylethanolamine N-methyltransferase gene to be associated with lean-nonalcoholic fatty liver disease[J]. J Clin Exp Hepatol, 2019, 9( 5): 561- 568. DOI: 10.1016/j.jceh.2019.02.001.
    [31] SEO JB, MOON HM, KIM WS, et al. Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor gamma expression[J]. Mol Cell Biol, 2004, 24( 8): 3430- 3444. DOI: 10.1128/MCB.24.8.3430-3444.2004.
    [32] SHAMARDL HAMA, IBRAHIM NA, MERZEBAN DH, et al. Resveratrol and Dulaglutide ameliorate adiposity and liver dysfunction in rats with diet-induced metabolic syndrome: Role of SIRT-1/adipokines/PPARγ and IGF-1[J]. Daru, 2023, 31( 1): 13- 27. DOI: 10.1007/s40199-023-00458-y.
    [33] ZHOU B, JIA LJ, ZHANG ZJ, et al. The nuclear orphan receptor NR2F6 promotes hepatic steatosis through upregulation of fatty acid transporter CD36[J]. Adv Sci(Weinh), 2020, 7( 21): 2002273. DOI: 10.1002/advs.202002273.
    [34] CHEN MN, WONG CM. The emerging roles of N6-methyladenosine(m6A) deregulation in liver carcinogenesis[J]. Mol Cancer, 2020, 19( 1): 44. DOI: 10.1186/s12943-020-01172-y.
    [35] HOU J, ZHANG H, LIU J, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma[J]. Mol Cancer, 2019, 18( 1): 163. DOI: 10.1186/s12943-019-1082-3.
    [36] HU Y, FENG Y, ZHANG LC, et al. GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m6A on lipogenic mRNAs[J]. RNA Biol, 2020, 17( 7): 930- 942. DOI: 10.1080/15476286.2020.1736868.
    [37] PENG SM, XIAO W, JU DP, et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1[J]. Sci Transl Med, 2019, 11( 488): eaau7116. DOI: 10.1126/scitranslmed.aau7116.
    [38] XU F, GUO WR. The progress of epigenetics in the development and progression of non-alcoholic fatty liver disease[J]. Liver Res, 2020, 4( 3): 118- 123. DOI: 10.1016/j.livres.2020.08.003.
    [39] BOLLINGER E, PELOQUIN M, LIBERA J, et al. BDK inhibition acts as a catabolic switch to mimic fasting and improve metabolism in mice[J]. Mol Metab, 2022, 66: 101611. DOI: 10.1016/j.molmet.2022.101611.
    [40] LEE S, WOO DC, KANG J, et al. The role of the histone methyltransferase EZH2 in liver inflammation and fibrosis in STAM NASH mice[J]. Biology(Basel), 2020, 9( 5): 93. DOI: 10.3390/biology9050093.
    [41] XIN FZ, ZHAO ZH, LIU XL, et al. Escherichia fergusonii promotes nonobese nonalcoholic fatty liver disease by interfering with host hepatic lipid metabolism through its own msRNA 23487[J]. Cell Mol Gastroenterol Hepatol, 2022, 13( 3): 827- 841. DOI: 10.1016/j.jcmgh.2021.12.003.
    [42] DONG H, WANG JJ, LI CM, et al. The phosphatidylethanolamine N-methyltransferase gene V175M single nucleotide polymorphism confers the susceptibility to NASH in Japanese population[J]. J Hepatol, 2007, 46( 5): 915- 920. DOI: 10.1016/j.jhep.2006.12.012.
    [43] LIU CH, AMPUERO J, GIL-GÓMEZ A, et al. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. J Hepatol, 2018, 69( 6): 1335- 1348. DOI: 10.1016/j.jhep.2018.08.008.
    [44] HUANG XY, YAO YC, HOU XL, et al. Macrophage SCAP contributes to metaflammation and lean NAFLD by activating STING-NF-κB signaling pathway[J]. Cell Mol Gastroenterol Hepatol, 2022, 14( 1): 1- 26. DOI: 10.1016/j.jcmgh.2022.03.006.
    [45] PETTA S, CIMINNISI S, DI MARCO V, et al. Sarcopenia is associated with severe liver fibrosis in patients with non-alcoholic fatty liver disease[J]. Aliment Pharmacol Ther, 2017, 45( 4): 510- 518. DOI: 10.1111/apt.13889.
    [46] HIMOTO T, MIYATAKE K, MAEBA T, et al. Verification of the nutritional and dietary factors associated with skeletal muscle index in Japanese patients with nonalcoholic fatty liver disease[J]. Can J Gastroenterol Hepatol, 2020, 2020: 3576974. DOI: 10.1155/2020/3576974.
    [47] NAIR VD, GE YC, LI SD, et al. Sedentary and trained older men have distinct circulating exosomal microRNA profiles at baseline and in response to acute exercise[J]. Front Physiol, 2020, 11: 605. DOI: 10.3389/fphys.2020.00605.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  550
  • HTML全文浏览量:  184
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-20
  • 录用日期:  2024-10-11
  • 出版日期:  2025-06-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回