中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

组织驻留记忆T细胞在慢性肝病中的调控机制与治疗靶点

林金 曾煜 田展飞 凡小丽

引用本文:
Citation:

组织驻留记忆T细胞在慢性肝病中的调控机制与治疗靶点

DOI: 10.12449/JCH250526
基金项目: 

国家自然科学基金 (82100552);

四川大学-达州校市合作专项资金 (2022CDDZ-18)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:林金、曾煜撰写和修改论文,二者对本文贡献相同;田展飞绘制图表;凡小丽指导撰写文章并最后定稿。
详细信息
    通信作者:

    凡小丽, fanxiaoli@scu.edu.cn (ORCID: 0000-0002-8434-2969)

The regulatory role of tissue-resident memory T cells in chronic liver diseases and associated therapeutic targets

Research funding: 

National Natural Science Foundation of China (82100552);

Sichuan University-Dazhou Cooperation Fundation (2022CDDZ-18)

More Information
  • 摘要: 组织驻留记忆T细胞(TRM细胞)是一类存在于组织中,具有组织特异性且不参与循环的记忆T细胞亚群。当潜在的危险攻击肝脏,如病原体(细菌或病毒等)侵袭或自身免疫反应过强时,TRM细胞作为第一道免疫防线,在病毒性肝炎、自身免疫性肝病、代谢相关脂肪性肝病、肝硬化和肝移植中都发挥着重要作用。本文阐述了肝脏TRM细胞的免疫表型,包括其表面标志物和转录谱,旨在进一步研究肝脏TRM细胞在慢性肝病中的作用,并探索其作为免疫治疗靶点的潜在功能。

     

  • 注: IL-15R,白细胞介素15受体;IL-15,白细胞介素15; TGF-βR,转化生长因子β受体;TCR,T细胞抗原受体;MHCⅠ,主要组织相容性复合体Ⅰ类分子。

    图  1  肝脏CD8+ TRM细胞的表型和代谢特征

    Figure  1.  Phenotype and metabolic profiles of liver CD8+ TRM cells

    注: a,病毒性肝炎中的肝脏TRM细胞;b,MAFLD中的肝脏TRM细胞;c,自身免疫性肝病中的肝脏TRM细胞;d,肝硬化中的肝脏TRM细胞。PANX1,泛连接蛋白1;CCL5,CC类趋化因子配体5;GzmB,颗粒酶B。

    图  2  不同慢性肝病中的肝脏TRM细胞

    Figure  2.  Hepatic TRM cells in different chronic liver diseases create with biorender

    注: PRDM1,含PR域蛋白1;NR3C1,核受体亚家族3C组成员1;GR,糖皮质激素受体;TETs,10-11易位家族。

    图  3  肝脏TRM细胞作为免疫疗法的潜在靶点

    Figure  3.  Potential targets of hepatic TRM cells as immunotherapy

    表  1  TRM 细胞的一般特征

    Table  1.   General features of TRM cells

    项目 效应分子 功能
    表面标志物 CD69 促进肝脏TRM 细胞的驻留状态并抑制S1PR1介导的细胞离开组织的过程
    CD103 与钙黏蛋白E的结合可能对TRM细胞的定位、黏附和保留至关重要
    CD49a 通过与整合素β1结合形成异二聚体VLA-1,促进整合素β1与胶原蛋白Ⅳ结合,导致驻留细胞保留在上皮细胞
    转录谱 BLIMP1、HOBIT HOBIT和BLIMP1的共表达下调TRM细胞中CCR7、KLF-2及S1PR1的表达,促进细胞驻留在组织中
    RUNX3 下调与循环T细胞发育相关的基因,并上调细胞驻留相关分子
    BHLHE40 诱导应激反应蛋白的表达,以促进应激下TRM细胞的效应功能
    TBX21(T-bet) 有助于IL-15受体的表达,以实现TRM细胞的长期存在
    趋化因子 TRM 细胞的维持和效应功能已被证明需要持续的趋化因子刺激
    趋化因子受体 CXCR3、CXCR6 通过结合单核细胞、肝窦内皮细胞和成纤维细胞分泌的多种趋化因子(如CXCL9、CXCL10、CXCL11和CXCL16),影响对TRM细胞的保留和维持

    注:BLIMP1,B细胞诱导成熟蛋白1;HOBIT,T细胞中BLIMP1的同源物;RUNX3,RUNT相关转录因子3;BHLHE40,E类基本螺旋环螺旋蛋白40;TBX21(T-bet),T盒转录因子21;CXCR,CXC趋化因子受体;CXCL,趋化因子CXC配体。

    下载: 导出CSV
  • [1] SALLUSTO F, LENIG D, FÖRSTER R, et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions[J]. Nature, 1999, 401( 6754): 708- 712. DOI: 10.1038/44385.
    [2] GEBHARDT T, WAKIM LM, EIDSMO L, et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus[J]. Nat Immunol, 2009, 10( 5): 524- 530. DOI: 10.1038/ni.1718.
    [3] MACKAY LK, RAHIMPOUR A, MA JZ, et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin[J]. Nat Immunol, 2013, 14( 12): 1294- 1301. DOI: 10.1038/ni.2744.
    [4] WANG N, WANG YH, JIANG FL, et al. Research progress on differentiation and regulation of memory T cell subsets[J]. Chin J Immun, 2023, 39( 6): 1326- 1330, 1336. DOI: 10.3969/j.issn.1000-484X.2023.06.044.

    王宁, 王一晗, 姜凤良, 等. 记忆性T细胞亚群及其分化调控研究进展[J]. 中国免疫学杂志, 2023, 39( 6): 1326- 1330, 1336. DOI: 10.3969/j.issn.1000-484X.2023.06.044.
    [5] KUMAR BV, MA WJ, MIRON M, et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites[J]. Cell Rep, 2017, 20( 12): 2921- 2934. DOI: 10.1016/j.celrep.2017.08.078.
    [6] WIJEYESINGHE S, BEURA LK, PIERSON MJ, et al. Expansible residence decentralizes immune homeostasis[J]. Nature, 2021, 592( 7854): 457- 462. DOI: 10.1038/s41586-021-03351-3.
    [7] SKON CN, LEE JY, ANDERSON KG, et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells[J]. Nat Immunol, 2013, 14( 12): 1285- 1293. DOI: 10.1038/ni.2745.
    [8] PALLETT LJ, DAVIES J, COLBECK EJ, et al. IL-2high tissue-resident T cells in the human liver: Sentinels for hepatotropic infection[J]. J Exp Med, 2017, 214( 6): 1567- 1580. DOI: 10.1084/jem.20162115.
    [9] YOU ZR, LI Y, WANG QX, et al. The clinical significance of hepatic CD69+ CD103+ CD8+ resident-memory T cells in autoimmune hepatitis[J]. Hepatology, 2021, 74( 2): 847- 863. DOI: 10.1002/hep.31739.
    [10] RAY SJ, FRANKI SN, PIERCE RH, et al. The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection[J]. Immunity, 2004, 20( 2): 167- 179. DOI: 10.1016/s1074-7613(04)00021-4.
    [11] GRIFFITH JW, SOKOL CL, LUSTER AD. Chemokines and chemokine receptors: Positioning cells for host defense and immunity[J]. Annu Rev Immunol, 2014, 32: 659- 702. DOI: 10.1146/annurev-immunol-032713-120145.
    [12] FERNANDEZ-RUIZ D, NG WY, HOLZ LE, et al. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection[J]. Immunity, 2019, 51( 4): 780. DOI: 10.1016/j.immuni.2019.09.019.
    [13] KIM JH, HAN JW, CHOI YJ, et al. Functions of human liver CD69+CD103-CD8+ T cells depend on HIF-2α activity in healthy and pathologic livers[J]. J Hepatol, 2020, 72( 6): 1170- 1181. DOI: 10.1016/j.jhep.2020.01.010.
    [14] BUQUICCHIO FA, FONSECA R, YAN PK, et al. Distinct epigenomic landscapes underlie tissue-specific memory T cell differentiation[J]. Immunity, 2024, 57( 9): 2202- 2215. DOI: 10.1016/j.immuni.2024.06.014.
    [15] SOWELL RT, MARZO AL. Resident-memory CD8 T cells and mTOR: Generation, protection, and clinical importance[J]. Front Immunol, 2015, 6: 38. DOI: 10.3389/fimmu.2015.00038.
    [16] FRIZZELL H, FONSECA R, CHRISTO SN, et al. Organ-specific isoform selection of fatty acid-binding proteins in tissue-resident lymphocytes[J]. Sci Immunol, 2020, 5( 46): eaay9283. DOI: 10.1126/sciimmunol.aay9283.
    [17] PALLETT LJ, BURTON AR, AMIN OE, et al. Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes[J]. J Exp Med, 2020, 217( 9): e20200050. DOI: 10.1084/jem.20200050.
    [18] WU LL, DENG H, FENG X, et al. Interferon-γ+ Th1 activates intrahepatic resident memory T cells to promote HBsAg loss by inducing M1 macrophage polarization[J]. J Med Virol, 2024, 96( 5): e29627. DOI: 10.1002/jmv.29627.
    [19] SUNG CC, HORNG JH, SIAO SH, et al. Asialo GM1-positive liver-resident CD8 T cells that express CD44 and LFA-1 are essential for immune clearance of hepatitis B virus[J]. Cell Mol Immunol, 2021, 18( 7): 1772- 1782. DOI: 10.1038/s41423-020-0376-0.
    [20] POCH T, KRAUSE J, CASAR C, et al. Single-cell atlas of hepatic T cells reveals expansion of liver-resident naive-like CD4+ T cells in primary sclerosing cholangitis[J]. J Hepatol, 2021, 75( 2): 414- 423. DOI: 10.1016/j.jhep.2021.03.016.
    [21] TONNERRE P, WOLSKI D, SUBUDHI S, et al. Differentiation of exhausted CD8+ T cells after termination of chronic antigen stimulation stops short of achieving functional T cell memory[J]. Nat Immunol, 2021, 22( 8): 1030- 1041. DOI: 10.1038/s41590-021-00982-6.
    [22] KEFALAKES H, HORGAN XJ, JUNG MK, et al. Liver-resident bystander CD8+ T cells contribute to liver disease pathogenesis in chronic hepatitis D virus infection[J]. Gastroenterology, 2021, 161( 5): 1567- 1583. DOI: 10.1053/j.gastro.2021.07.027.
    [23] DUDEK M, PFISTER D, DONAKONDA S, et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH[J]. Nature, 2021, 592( 7854): 444- 449. DOI: 10.1038/s41586-021-03233-8.
    [24] MARINOVIĆ S, LENARTIĆ M, MLADENIĆ K, et al. NKG2D-mediated detection of metabolically stressed hepatocytes by innate-like T cells is essential for initiation of NASH and fibrosis[J]. Sci Immunol, 2023, 8( 87): eadd1599. DOI: 10.1126/sciimmunol.add1599.
    [25] KODA Y, TERATANI T, CHU PS, et al. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells[J]. Nat Commun, 2021, 12: 4474. DOI: 10.1038/s41467-021-24734-0.
    [26] TRIVEDI PJ, HIRSCHFIELD GM. Recent advances in clinical practice: Epidemiology of autoimmune liver diseases[J]. Gut, 2021, 70( 10): 1989- 2003. DOI: 10.1136/gutjnl-2020-322362.
    [27] ZIMMER CL, VON SETH E, BUGGERT M, et al. A biliary immune landscape map of primary sclerosing cholangitis reveals a dominant network of neutrophils and tissue-resident T cells[J]. Sci Transl Med, 2021, 13( 599): eabb3107. DOI: 10.1126/scitranslmed.abb3107.
    [28] ZHU HX, YANG SH, GAO CY, et al. Targeting pathogenic CD8+ tissue-resident T cells with chimeric antigen receptor therapy in murine autoimmune cholangitis[J]. Nat Commun, 2024, 15: 2936. DOI: 10.1038/s41467-024-46654-5.
    [29] LI YK, LI B, XIAO X, et al. Itaconate inhibits CD103+ TRM cells and alleviates hepatobiliary injury in mouse models of primary sclerosing cholangitis[J]. Hepatology, 2024, 79( 1): 25- 38. DOI: 10.1097/HEP.0000000000000549.
    [30] FU JN, SYKES M. Emerging concepts of tissue-resident memory T cells in transplantation[J]. Transplantation, 2022, 106( 6): 1132- 1142. DOI: 10.1097/TP.0000000000004000.
    [31] LI XQ, LI SP, WANG Y, et al. Single cell RNA-sequencing delineates CD8+ tissue resident memory T cells maintaining rejection in liver transplantation[J]. Theranostics, 2024, 14( 12): 4844- 4860. DOI: 10.7150/thno.96928.
    [32] SCHARPING NE, RIVADENEIRA DB, MENK AV, et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion[J]. Nat Immunol, 2021, 22( 2): 205- 215. DOI: 10.1038/s41590-020-00834-9.
    [33] PAN YD, TIAN T, PARK CO, et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism[J]. Nature, 2017, 543( 7644): 252- 256. DOI: 10.1038/nature21379.
    [34] HUANG BY, LYU ZW, QIAN QW, et al. NUDT1 promotes the accumulation and longevity of CD103+ TRM cells in primary biliary cholangitis[J]. J Hepatol, 2022, 77( 5): 1311- 1324. DOI: 10.1016/j.jhep.2022.06.014.
    [35] TSUZUKI T, NAKATSU Y, NAKABEPPU Y. Significance of error-avoiding mechanisms for oxidative DNA damage in carcinogenesis[J]. Cancer Sci, 2007, 98( 4): 465- 470. DOI: 10.1111/j.1349-7006.2007.00409.x.
    [36] MARIATHASAN S, WEISS DS, NEWTON K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP[J]. Nature, 2006, 440( 7081): 228- 232. DOI: 10.1038/nature04515.
    [37] BORGES DA SILVA H, BEURA LK, WANG HG, et al. The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells[J]. Nature, 2018, 559( 7713): 264- 268. DOI: 10.1038/s41586-018-0282-0.
    [38] CAIN DW, CIDLOWSKI JA. Immune regulation by glucocorticoids[J]. Nat Rev Immunol, 2017, 17( 4): 233- 247. DOI: 10.1038/nri.2017.1.
    [39] MILNER JJ, TOMA C, YU B, et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours[J]. Nature, 2017, 552( 7684): 253- 257. DOI: 10.1038/nature24993.
    [40] SWADLING L, PALLETT LJ, DINIZ MO, et al. Human liver memory CD8+ T cells use autophagy for tissue residence[J]. Cell Rep, 2020, 30( 3): 687- 698. DOI: 10.1016/j.celrep.2019.12.050.
    [41] WIGGINS BG, PALLETT LJ, LI XY, et al. The human liver microenvironment shapes the homing and function of CD4+ T-cell populations[J]. Gut, 2022, 71( 7): 1399- 1411. DOI: 10.1136/gutjnl-2020-323771.
    [42] FONSECA R, BURN TN, GANDOLFO LC, et al. Runx3 drives a CD8+ T cell tissue residency program that is absent in CD4+ T cells[J]. Nat Immunol, 2022, 23( 8): 1236- 1245. DOI: 10.1038/s41590-022-01273-4.
    [43] CHEN CJ, YIN Y, SHI GN, et al. A highly selective JAK3 inhibitor is developed for treating rheumatoid arthritis by suppressing γc cytokine-related JAK-STAT signal[J]. Sci Adv, 2022, 8( 33): eabo4363. DOI: 10.1126/sciadv.abo4363.
    [44] MERAVIGLIA-CRIVELLI D, VILLANUEVA H, ZHELEVA A, et al. IL-6/STAT3 signaling in tumor cells restricts the expression of frameshift-derived neoantigens by SMG1 induction[J]. Mol Cancer, 2022, 21: 211. DOI: 10.1186/s12943-022-01679-6.
    [45] ZHOU P, TAO K, ZENG L, et al. IRG1/Itaconate inhibits proliferation and promotes apoptosis of CD69+CD103+CD8+ tissue-resident memory T cells in autoimmune hepatitis by regulating the JAK3/STAT3/P53 signalling pathway[J]. Apoptosis, 2024, 29( 9-10): 1738- 1756. DOI: 10.1007/s10495-024-01970-5.
    [46] LI C, HE YY, ZHANG YT, et al. Tauroursodeoxycholic acid(TUDCA) disparate pharmacological effects to lung tissue-resident memory T cells contribute to alleviated silicosis[J]. Biomed Pharmacother, 2022, 151: 113173. DOI: 10.1016/j.biopha.2022.113173.
    [47] RAKHRA K, ABRAHAM W, WANG CS, et al. Exploiting albumin as a mucosal vaccine chaperone for robust generation of lung-resident memory T cells[J]. Sci Immunol, 2021, 6( 57): eabd8003. DOI: 10.1126/sciimmunol.abd8003.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  989
  • HTML全文浏览量:  40
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-18
  • 录用日期:  2024-10-22
  • 出版日期:  2025-05-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回