中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短链脂肪酸在肝性脑病中的免疫调节作用及潜在诊疗价值

陈玮钰 毛德文 王涵 杜洋 冯雯倩 付蕾 姚春

引用本文:
Citation:

短链脂肪酸在肝性脑病中的免疫调节作用及潜在诊疗价值

DOI: 10.12449/JCH250523
基金项目: 

广西重点研发计划项目(桂科AB22035076) ;

国家自然科学基金地区基金 (82260899);

广西研究生教育创新计划项目 (YCBZ2024149);

广西研究生教育创新计划项目 (YCSW2024407);

国家中医药传承创新中心研究任务 (2023019-03);

广西中药壮瑶药多学科交叉创新团队 (GZKJ2301);

广西疑难重症中医诊疗研究团队 (2022A001);

国家中医药管理局高水平中医药重点学科建设项目 (zyyzdxk-2023166)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:姚春、陈玮钰负责研究选题并拟定写作思路;毛德文、王涵、付蕾负责设计论文框架;杜洋、冯雯倩负责收集和整理文献材料;陈玮钰负责文章撰写及修改。
详细信息
    通信作者:

    付蕾, lfu@gxtcmu.edu.cn (ORCID: 0009-0001-1600-3068)

    姚春, yaoc@gxtcmu.edu.cn (ORCID: 0000-0003-2903-8814)

Immunomodulatory effect of short-chain fatty acids in hepatic encephalopathy and its potential diagnostic value

Research funding: 

Guangxi Key Research and Development Project (Guike AB22035076) ;

Regional Foundation of National Natural Science Foundation of China (82260899);

Innovation Project of Guangxi Graduate Education (YCBZ2024149);

Innovation Project of Guangxi Graduate Education (YCSW2024407);

Research Undertaking of the National Traditional Chinese Medicine Inheritance and Innovation Center (2023019-03);

Guangxi Traditional Chinese Medicine Zhuangyao Medicine Multidisciplinary Cross Innovation Team (GZKJ2301);

Guangxi Difficult and Severe TCM Diagnosis and Treatment Research Team (2022A001);

State Administration of Traditional Chinese Medicine High-level Key Discipline Construction Project of Traditional Chinese Medicine (zyyzdxk-2023166)

More Information
  • 摘要: 肝性脑病(HE)作为临床常见的严重肝病终末期并发症,其有效救治率亟需提升,发病机制亟待攻克。肝脏是重要的免疫调节中心,免疫稳态失衡在HE的病理机制中占主导地位。短链脂肪酸(SCFA)作为肠道菌群的主要代谢物之一,在先天性免疫和适应性免疫的生物学过程中扮演着重要角色,能够调控免疫细胞的增殖分化、维持肠道微环境稳态和屏障功能完整性。研究表明,SCFA通过免疫调节途径与肝-肠-脑轴进行双向、动态的交互反应和信号传递,在HE的诊疗和预后评估方面具有不可忽视的作用。基于此,本文以SCFA的免疫调节效应为切入点,就SCFA与肝-肠-脑轴的串扰关系,以及SCFA在HE诊疗中的重要意义进行归纳和探讨,以期为优化HE临床防治方案提供新的思路。

     

  • 注: JNK,c-jun氨基末端转移酶;IκB,核因子κB抑制因子;Iκκ,IκB激酶。

    图  1  SCFA与肝-肠-脑轴的免疫调节路径

    Figure  1.  Immunomodulatory pathways of SCFA and liver-gut-brain axis

    表  1  SCFA对免疫系统的调节作用

    Table  1.   The regulatory effect of SCFA on immune system

    免疫机制 免疫细胞类型 SCFA类型 作用机制
    先天性免疫 树突状细胞 丁酸盐 激活GPR109A信号传导和抑制HDAC活性,减少树突状细胞的分化,促进抗炎细胞因子IL-10的表达,抑制促炎细胞因子IL-12、干扰素γ的产生,增强免疫系统对抗原的耐受性14-15
    丁酸盐、丙酸盐 下调树突状细胞中IL-6、IL-12和IL-23的表达,抑制抗原特异性CD8+ T细胞的活化,促进初始T细胞分化为Treg,有助于增强树突状细胞的免疫耐受活性16
    乙酸盐、丁酸盐 分别激活树突状细胞中的GPR109A和肠上皮细胞中的GPR43,触发SCFA信号传导,增强免疫细胞CD103+树突状细胞的耐受活性,以抑制过度的免疫反应17
    巨噬细胞 丁酸盐 抑制HDAC活性,诱导肠道巨噬细胞的糖酵解水平下调,减少肠道内促炎细胞因子的释放,增强巨噬细胞的抗菌功能18-19
    丁酸盐、丙酸盐 激活GPR43信号传导和抑制HDAC活性,增加组蛋白H3的乙酰化水平,诱导巨噬细胞由促炎M1表型向抗炎M2表型极化,减轻炎症反应19-20
    中性粒细胞 丁酸盐 抑制HDAC活性以减少中性粒细胞来源的趋化因子和促炎细胞因子的释放水平,调节肠道局部免疫以发挥抗炎作用21
    丁酸盐、丙酸盐 抑制HDAC活性和NF-κB、MAPK信号通路活化,以及诱导乙酰化组蛋白H3的高表达,从而减少中性粒细胞对趋化因子和炎症介质的释放22-23
    丁酸盐、丙酸盐、乙酸盐 抑制NF-κB信号通路活化,减少中性粒细胞释放促炎细胞因子TNF-α、IL-6和IL-1α,拮抗炎症损伤24
    嗜酸性粒细胞 丁酸盐、丙酸盐 抑制HDAC活性,诱导嗜酸性粒细胞中线粒体膜电位去极化和Caspase-3/7激活,启动细胞凋亡以抑制嗜酸性粒细胞浸润,促进炎症消退25
    嗜碱性粒细胞 丁酸盐、丙酸盐 抑制HDAC活性,诱导IL-13表达增加并减少IL-4产生,介导嗜碱性粒细胞脱颗粒,加速细胞凋亡,从而恢复保护性免疫平衡26
    ILC 乙酸盐 激活GPR43,从而增强ILC3中IL-1受体的表达,导致IL-1β的分泌增加以诱导IL-22的产生,IL-22能加速黏蛋白的合成以维持屏障功能完整性,实现抗炎作用27-28
    丁酸盐 激活GPR41和抑制HDAC活性,能减少ILC2增殖并上调IL-22的表达,促进黏蛋白合成,修复肠道屏障以维持免疫稳态29-30
    乙酸盐、丙酸盐 触发GPR43信号传导,进一步介导AKT/STAT3轴差异性激活AKT或ERK信号,导致ILC3丰度增加并促进IL-22分泌,增强肠道稳态和宿主防御31
    适应性免疫 T细胞 丁酸盐 一方面通过激活GPR43、GPR109A信号传导和抑制HDAC活性介导FOXP3基因位点乙酰化,驱动FOXP3基因的转录,诱导初始CD4+ T细胞向Treg分化,以及增加IL-10的产生;另一方面通过介导TCA循环与糖酵解的解耦强化细胞能量产生途径,维持CD8+ T细胞的特异性抗原识别功能,协同调节肠道炎症反应和建立免疫稳态32-35
    丙酸盐 能够在不影响机体对病原体正常防御性免疫反应的情况下,扩增Treg数量和保护Treg功能,提供积极的抗炎效应36
    丁酸盐、丙酸盐 抑制HDAC活性进而增加FOXP3的表达,促进抗炎Treg生成以重建肠道菌群与免疫系统之间的通信网络,恢复促炎和抗炎机制之间的平衡37
    B细胞 乙酸盐 一方面通过激活GPR43以促进树突状细胞中视黄酸信号传导,进而诱导B细胞协同产生IgA,肠道中的IgA对保护肠道免受炎症损伤具有重要作用;另一方面通过促进乙酰辅酶A的生成与代谢,驱动TCA循环产生能量和翻译后赖氨酸的乙酰化,诱导Breg分泌IL-10,实现免疫保护和维持免疫稳态38-39
    丙酸盐 激活GPR43信号传导以诱导GrB的表达,驱动Breg产生IL-10和TTP,其中TTP能加速IL-10的降解,而丙酸盐可诱导GrB与TTP形成复合物以维持IL-10的功能稳定性,从而调节适应性免疫反应40
    丁酸盐 既可通过增加血清5-HIAA的水平进而强化Breg的防御功能,又能与5-HIAA协同激活芳香烃受体依赖性基因转录,有助于Breg识别并抑制自身免疫。此外,还能通过调节昼夜节律相关基因的表达诱导Breg分泌IL-10,确保免疫反应的适度和精确性41-42
    丁酸盐、丙酸盐 抑制HDAC活性以下调B细胞中免疫应答关键调节剂Aicda和Prdm1的表达,从而延缓B细胞内抗体类别转换重组和浆细胞分化的进程,以防止过度的自身免疫,维持免疫系统平衡43

    注:IL,白细胞介素;Treg,调节性T细胞;TNF-α,肿瘤坏死因子α;Caspase,半胱氨酸天冬氨酸蛋白酶;AKT,蛋白激酶B;STAT,信号传导和转录启动因子;ERK,细胞外调节蛋白激酶;FOXP3,叉头框蛋白P3;IgA,免疫球蛋白A;Breg,调节性B细胞;GrB,颗粒酶B;TTP,Tristetraprolin;5-HIAA,5-羟吲哚乙酸;Aicda,活化诱导胞嘧啶核苷脱氨酶;Prdm1,PR结构域锌指蛋白1。

    下载: 导出CSV
  • [1] YANNY B, WINTERS A, BOUTROS S, et al. Hepatic encephalopathy challenges, burden, and diagnostic and therapeutic approach[J]. Clin Liver Dis, 2019, 23( 4): 607- 623. DOI: 10.1016/j.cld.2019.07.001.
    [2] ELSAID MI, RUSTGI VK. Epidemiology of hepatic encephalopathy[J]. Clin Liver Dis, 2020, 24( 2): 157- 174. DOI: 10.1016/j.cld.2020.01.001.
    [3] TAPPER EB, ABERASTURI D, ZHAO Z, et al. Outcomes after hepatic encephalopathy in population-based cohorts of patients with cirrhosis[J]. Aliment Pharmacol Ther, 2020, 51( 12): 1397- 1405. DOI: 10.1111/apt.15749.
    [4] MIRZAEI R, BOUZARI B, HOSSEINI-FARD SR, et al. Role of microbiota-derived short-chain fatty acids in nervous system disorders[J]. Biomed Pharmacother, 2021, 139: 111661. DOI: 10.1016/j.biopha.2021.111661.
    [5] FERNANDES J, SU W, RAHAT-ROZENBLOOM S, et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans[J]. Nutr Diabetes, 2014, 4( 6): e121. DOI: 10.1038/nutd.2014.23.
    [6] YANG HJ, KIM JH. Role of microbiome and its metabolite, short chain fatty acid in prostate cancer[J]. Investig Clin Urol, 2023, 64( 1): 3- 12. DOI: 10.4111/icu.20220370.
    [7] de VADDER F, KOVATCHEVA-DATCHARY P, GONCALVES D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156( 1-2): 84- 96. DOI: 10.1016/j.cell.2013.12.016.
    [8] BERGMAN EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species[J]. Physiol Rev, 1990, 70( 2): 567- 590. DOI: 10.1152/physrev.1990.70.2.567.
    [9] COMALADA M, BAILÓN E, DE HARO O, et al. The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype[J]. J Cancer Res Clin Oncol, 2006, 132( 8): 487- 497. DOI: 10.1007/s00432-006-0092-x.
    [10] MACHADO MG, PATENTE TA, ROUILLÉ Y, et al. Acetate improves the killing of Streptococcus pneumoniae by alveolar macrophages via NLRP3 inflammasome and glycolysis-HIF-1α axis[J]. Front Immunol, 2022, 13: 773261. DOI: 10.3389/fimmu.2022.773261.
    [11] LANGE O, PROCZKO-STEPANIAK M, MIKA A. Short-chain fatty acids-a product of the microbiome and its participation in two-way communication on the microbiome-host mammal line[J]. Curr Obes Rep, 2023, 12( 2): 108- 126. DOI: 10.1007/s13679-023-00503-6.
    [12] YANG M, ZHANG CY. G protein-coupled receptors as potential targets for nonalcoholic fatty liver disease treatment[J]. World J Gastroenterol, 2021, 27( 8): 677- 691. DOI: 10.3748/wjg.v27.i8.677.
    [13] ZHANG L, SHI XH, QIU HM, et al. Protein modification by short-chain fatty acid metabolites in sepsis: A comprehensive review[J]. Front Immunol, 2023, 14: 1171834. DOI: 10.3389/fimmu.2023.1171834.
    [14] KAISAR MMM, PELGROM LR, VAN DER HAM AJ, et al. Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling[J]. Front Immunol, 2017, 8: 1429. DOI: 10.3389/fimmu.2017.01429.
    [15] LIU L, LI L, MIN J, et al. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells[J]. Cell Immunol, 2012, 277( 1-2): 66- 73. DOI: 10.1016/j.cellimm.2012.05.011.
    [16] NASTASI C, FREDHOLM S, WILLERSLEV-OLSEN A, et al. Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells[J]. Sci Rep, 2017, 7( 1): 14516. DOI: 10.1038/s41598-017-15099-w.
    [17] TAN J, MCKENZIE C, VUILLERMIN PJ, et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways[J]. Cell Rep, 2016, 15( 12): 2809- 2824. DOI: 10.1016/j.celrep.2016.05.047.
    [18] SCHULTHESS J, PANDEY S, CAPITANI M, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages[J]. Immunity, 2019, 50( 2): 432- 445. DOI: 10.1016/j.immuni.2018.12.018.
    [19] CHANG PV, HAO LM, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci U S A, 2014, 111( 6): 2247- 2252. DOI: 10.1073/pnas.1322269111.
    [20] HUANG CR, DU W, NI YM, et al. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo[J]. Clin Exp Immunol, 2022, 207( 1): 53- 64. DOI: 10.1093/cei/uxab028.
    [21] LI GF, LIN J, ZHANG C, et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease[J]. Gut Microbes, 2021, 13( 1): 1968257. DOI: 10.1080/19490976.2021.1968257.
    [22] AOYAMA M, KOTANI J, USAMI M. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways[J]. Nutrition, 2010, 26( 6): 653- 661. DOI: 10.1016/j.nut.2009.07.006.
    [23] VINOLO MA, RODRIGUES HG, HATANAKA E, et al. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils[J]. J Nutr Biochem, 2011, 22( 9): 849- 855. DOI: 10.1016/j.jnutbio.2010.07.009.
    [24] TEDELIND S, WESTBERG F, KJERRULF M, et al. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease[J]. World J Gastroenterol, 2007, 13( 20): 2826- 2832. DOI: 10.3748/wjg.v13.i20.2826.
    [25] THEILER A, BÄRNTHALER T, PLATZER W, et al. Butyrate ameliorates allergic airway inflammation by limiting eosinophil trafficking and survival[J]. J Allergy Clin Immunol, 2019, 144( 3): 764- 776. DOI: 10.1016/j.jaci.2019.05.002.
    [26] SHI YB, XU MZ, PAN S, et al. Induction of the apoptosis, degranulation and IL-13 production of human basophils by butyrate and propionate via suppression of histone deacetylation[J]. Immunology, 2021, 164( 2): 292- 304. DOI: 10.1111/imm.13370.
    [27] FACHI JL, SÉCCA C, RODRIGUES PB, et al. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2[J]. J Exp Med, 2020, 217( 3): e20190489. DOI: 10.1084/jem.20190489.
    [28] SERAFINI N, JARADE A, SURACE L, et al. Trained ILC3 responses promote intestinal defense[J]. Science, 2022, 375( 6583): 859- 863. DOI: 10.1126/science.aaz8777.
    [29] YANG WJ, YU TM, HUANG XS, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity[J]. Nat Commun, 2020, 11( 1): 4457. DOI: 10.1038/s41467-020-18262-6.
    [30] THIO CL, CHI PY, LAI AC, et al. Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate[J]. J Allergy Clin Immunol, 2018, 142( 6): 1867- 1883. DOI: 10.1016/j.jaci.2018.02.032.
    [31] CHUN E, LAVOIE S, FONSECA-PEREIRA D, et al. Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity[J]. Immunity, 2019, 51( 5): 871- 884. DOI: 10.1016/j.immuni.2019.09.014.
    [32] KIBBIE JJ, DILLON SM, THOMPSON TA, et al. Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase(HDAC) inhibition and GPR43 signaling[J]. Immunobiology, 2021, 226( 5): 152126. DOI: 10.1016/j.imbio.2021.152126.
    [33] FURUSAWA Y, OBATA Y, FUKUDA S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504( 7480): 446- 450. DOI: 10.1038/nature12721.
    [34] SINGH N, GURAV A, SIVAPRAKASAM S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40( 1): 128- 139. DOI: 10.1016/j.immuni.2013.12.007.
    [35] BACHEM A, MAKHLOUF C, BINGER KJ, et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells[J]. Immunity, 2019, 51( 2): 285- 297. DOI: 10.1016/j.immuni.2019.06.002.
    [36] MEYER F, SEIBERT FS, NIENEN M, et al. Propionate supplementation promotes the expansion of peripheral regulatory T-Cells in patients with end-stage renal disease[J]. J Nephrol, 2020, 33( 4): 817- 827. DOI: 10.1007/s40620-019-00694-z.
    [37] ARPAIA N, CAMPBELL C, FAN XY, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504( 7480): 451- 455. DOI: 10.1038/nature12726.
    [38] WU W, SUN M, CHEN F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43[J]. Mucosal Immunol, 2017, 10( 4): 946- 956. DOI: 10.1038/mi.2016.114.
    [39] DAÏEN CI, TAN J, AUDO R, et al. Gut-derived acetate promotes B10 cells with antiinflammatory effects[J]. JCI Insight, 2021, 6( 7): e144156. DOI: 10.1172/jci.insight.144156.
    [40] TIAN GX, PENG KP, YU Y, et al. Propionic acid regulates immune tolerant properties in B Cells[J]. J Cell Mol Med, 2022, 26( 10): 2766- 2776. DOI: 10.1111/jcmm.17287.
    [41] ROSSER EC, PIPER CJM, MATEI DE, et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells[J]. Cell Metab, 2020, 31( 4): 837- 851. DOI: 10.1016/j.cmet.2020.03.003.
    [42] KIM DS, WOO JS, MIN HK, et al. Short-chain fatty acid butyrate induces IL-10-producing B cells by regulating circadian-clock-related genes to ameliorate Sjögren’s syndrome[J]. J Autoimmun, 2021, 119: 102611. DOI: 10.1016/j.jaut.2021.102611.
    [43] SANCHEZ HN, MORONEY JB, GAN HQ, et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids[J]. Nat Commun, 2020, 11( 1): 60. DOI: 10.1038/s41467-019-13603-6.
    [44] BLOEMEN JG, VENEMA K, van de POLL MC, et al. Short chain fatty acids exchange across the gut and liver in humans measured at surgery[J]. Clin Nutr, 2009, 28( 6): 657- 661. DOI: 10.1016/j.clnu.2009.05.011.
    [45] LIWINSKI T, CASAR C, RUEHLEMANN MC, et al. A disease-specific decline of the relative abundance of Bifidobacterium in patients with autoimmune hepatitis[J]. Aliment Pharmacol Ther, 2020, 51( 12): 1417- 1428. DOI: 10.1111/apt.15754.
    [46] KUMMEN M, THINGHOLM LB, RÜHLEMANN MC, et al. Altered gut microbial metabolism of essential nutrients in primary sclerosing cholangitis[J]. Gastroenterology, 2021, 160( 5): 1784- 1798. DOI: 10.1053/j.gastro.2020.12.058.
    [47] CORNEJO-PAREJA I, AMIAR MR, OCAÑA-WILHELMI L, et al. Non-alcoholic fatty liver disease in patients with morbid obesity: The gut microbiota axis as a potential pathophysiology mechanism[J]. J Gastroenterol, 2024, 59( 4): 329- 341. DOI: 10.1007/s00535-023-02075-7.
    [48] BRÜSSOW H, PARKINSON SJ. You are what you eat[J]. Nat Biotechnol, 2014, 32( 3): 243- 245. DOI: 10.1038/nbt.2845.
    [49] DEN BESTEN G, BLEEKER A, GERDING A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation[J]. Diabetes, 2015, 64( 7): 2398- 2408. DOI: 10.2337/db14-1213.
    [50] DENG MJ, QU F, CHEN L, et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD[J]. J Endocrinol, 2020, 245( 3): 425- 437. DOI: 10.1530/JOE-20-0018.
    [51] WEI YR, LI YM, YAN L, et al. Alterations of gut microbiome in autoimmune hepatitis[J]. Gut, 2020, 69( 3): 569- 577. DOI: 10.1136/gutjnl-2018-317836.
    [52] AWONIYI M, WANG J, NGO B, et al. Protective and aggressive bacterial subsets and metabolites modify hepatobiliary inflammation and fibrosis in a murine model of PSC[J]. Gut, 2023, 72( 4): 671- 685. DOI: 10.1136/gutjnl-2021-326500.
    [53] SINGH V, YEOH BS, CHASSAING B, et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer[J]. Cell, 2018, 175( 3): 679- 694. DOI: 10.1016/j.cell.2018.09.004.
    [54] BEHARY J, AMORIM N, JIANG XT, et al. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma[J]. Nat Commun, 2021, 12( 1): 187. DOI: 10.1038/s41467-020-20422-7.
    [55] PRATT M, FORBES JD, KNOX NC, et al. Microbiome-mediated immune signaling in inflammatory bowel disease and colorectal cancer: Support from meta-omics data[J]. Front Cell Dev Biol, 2021, 9: 716604. DOI: 10.3389/fcell.2021.716604.
    [56] HANUS M, PARADA-VENEGAS D, LANDSKRON G, et al. Immune system, microbiota, and microbial metabolites: The unresolved triad in colorectal cancer microenvironment[J]. Front Immunol, 2021, 12: 612826. DOI: 10.3389/fimmu.2021.612826.
    [57] KIRUNDI J, MOGHADAMRAD S, URBANIAK C. Microbiome-liver crosstalk: A multihit therapeutic target for liver disease[J]. World J Gastroenterol, 2023, 29( 11): 1651- 1668. DOI: 10.3748/wjg.v29.i11.1651.
    [58] CUMMINGS JH, POMARE EW, BRANCH WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J]. Gut, 1987, 28( 10): 1221- 1227. DOI: 10.1136/gut.28.10.1221.
    [59] SIVAPRAKASAM S, BHUTIA YD, YANG SP, et al. Short-chain fatty acid transporters: Role in colonic homeostasis[J]. Compr Physiol, 2017, 8( 1): 299- 314. DOI: 10.1002/cphy.c170014.
    [60] FRANK DN, AMAND AL ST, FELDMAN RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases[J]. Proc Natl Acad Sci U S A, 2007, 104( 34): 13780- 13785. DOI: 10.1073/pnas.0706625104.
    [61] MIRZAEI R, AFAGHI A, BABAKHANI S, et al. Role of microbiota-derived short-chain fatty acids in cancer development and prevention[J]. Biomed Pharmacother, 2021, 139: 111619. DOI: 10.1016/j.biopha.2021.111619.
    [62] MA JY, PIAO XS, MAHFUZ S, et al. The interaction among gut microbes, the intestinal barrier and short chain fatty acids[J]. Anim Nutr, 2021, 9: 159- 174. DOI: 10.1016/j.aninu.2021.09.012.
    [63] PARADA VENEGAS D, de la FUENTE MK, LANDSKRON G, et al. Short chain fatty acids(SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 277. DOI: 10.3389/fimmu.2019.00277.
    [64] AGIRMAN G, YU KB, HSIAO EY. Signaling inflammation across the gut-brain axis[J]. Science, 2021, 374( 6571): 1087- 1092. DOI: 10.1126/science.abi6087.
    [65] ASHIQUE S, MOHANTO S, AHMED MG, et al. Gut-brain axis: A cutting-edge approach to target neurological disorders and potential synbiotic application[J]. Heliyon, 2024, 10( 13): e34092. DOI: 10.1016/j.heliyon.2024.e34092.
    [66] LIU JM, LI HJ, GONG TY, et al. Anti-neuroinflammatory effect of short-chain fatty acid acetate against Alzheimer’s disease via upregulating GPR41 and inhibiting ERK/JNK/NF-κB[J]. J Agric Food Chem, 2020, 68( 27): 7152- 7161. DOI: 10.1021/acs.jafc.0c02807.
    [67] CHEN RZ, XU Y, WU P, et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota[J]. Pharmacol Res, 2019, 148: 104403. DOI: 10.1016/j.phrs.2019.104403.
    [68] ERNY D, HRABĚ DE ANGELIS AL, JAITIN D, et al. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nat Neurosci, 2015, 18( 7): 965- 977. DOI: 10.1038/nn.4030.
    [69] BRANISTE V, AL-ASMAKH M, KOWAL C, et al. The gut microbiota influences blood-brain barrier permeability in mice[J]. Sci Transl Med, 2014, 6( 263): 263ra158. DOI: 10.1126/scitranslmed.3009759.
    [70] WYSS MT, MAGISTRETTI PJ, BUCK A, et al. Labeled acetate as a marker of astrocytic metabolism[J]. J Cereb Blood Flow Metab, 2011, 31( 8): 1668- 1674. DOI: 10.1038/jcbfm.2011.84.
    [71] KOH A, de VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165( 6): 1332- 1345. DOI: 10.1016/j.cell.2016.05.041.
    [72] PABST O, HORNEF MW, SCHAAP FG, et al. Gut-liver axis: Barriers and functional circuits[J]. Nat Rev Gastroenterol Hepatol, 2023, 20( 7): 447- 461. DOI: 10.1038/s41575-023-00771-6.
    [73] BLOOM PP, TAPPER EB, YOUNG VB, et al. Microbiome therapeutics for hepatic encephalopathy[J]. J Hepatol, 2021, 75( 6): 1452- 1464. DOI: 10.1016/j.jhep.2021.08.004.
    [74] BLOOM PP, LUÉVANO JM Jr, MILLER KJ, et al. Deep stool microbiome analysis in cirrhosis reveals an association between short-chain fatty acids and hepatic encephalopathy[J]. Ann Hepatol, 2021, 25: 100333. DOI: 10.1016/j.aohep.2021.100333.
    [75] WANG Q, CHEN CX, ZUO S, et al. Integrative analysis of the gut microbiota and faecal and serum short-chain fatty acids and tryptophan metabolites in patients with cirrhosis and hepatic encephalopathy[J]. J Transl Med, 2023, 21( 1): 395. DOI: 10.1186/s12967-023-04262-9.
    [76] BAJAJ JS. The role of microbiota in hepatic encephalopathy[J]. Gut Microbes, 2014, 5( 3): 397- 403. DOI: 10.4161/gmic.28684.
    [77] JUANOLA O, FERRUSQUÍA-ACOSTA J, GARCÍA-VILLALBA R, et al. Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis[J]. FASEB J, 2019, 33( 10): 11595- 11605. DOI: 10.1096/fj.201901327R.
    [78] ZHU RR, LIU LW, ZHANG GZ, et al. The pathogenesis of gut microbiota in hepatic encephalopathy by the gut-liver-brain axis[J]. Biosci Rep, 2023, 43( 6): BSR20222524. DOI: 10.1042/BSR20222524.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  46
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-18
  • 录用日期:  2024-10-10
  • 出版日期:  2025-05-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回