中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

血红素加氧酶在代谢相关脂肪性肝病中的作用及调控机制

费景兰 李道政 武俊超 王雷

引用本文:
Citation:

血红素加氧酶在代谢相关脂肪性肝病中的作用及调控机制

DOI: 10.12449/JCH250522
基金项目: 

河南省重点研发与推广专项项目 (232102310450);

河南省中医药科学研究专项课题 (2022JDZX089);

河南省医学科技公关计划项目 (RKX202201009);

河南省社会科学规划委托项目 (2024XWT005)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:费景兰负责课题设计,资料分析,撰写论文;李道政参与收集及分析文献资料;武俊超参与修改论文;王雷负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    王雷, hyzhaohushan@163.com (ORCID: 0009-0002-8488-5741)

Role and regulatory mechanism of heme oxygenase in metabolic associated fatty liver disease

Research funding: 

Special Project of Key R & D and Promotion in Henan Province (232102310450);

Henan Province Chinese Medicine Scientific Research Special Project (2022JDZX089);

Henan Provincial Medical Science and Technology Public Relations Programme (RKX202201009);

Henan Provincial Social Sciences Planning Project (2024XWT005)

More Information
  • 摘要: 本文系统梳理血红素加氧酶(HO)在代谢相关脂肪性肝病(MAFLD)发病机制中的作用与关系,重点探讨了HO的生物学功能、在肝脏中的表达调控、与脂质代谢的关系,以及在炎症反应与氧化应激中的调节作用,旨在揭示HO在MAFLD中的潜在治疗靶点和机制,为未来的治疗策略提供新的视角和方向。

     

  • 图  1  HO在MAFLD中的调控机制

    Figure  1.  Control mechanism of HO in MAFLD

  • [1] YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64( 1): 73- 84. DOI: 10.1002/hep.28431.
    [2] ADAMS LA, ANSTEE QM, TILG H, et al. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases[J]. Gut, 2017, 66( 6): 1138- 1153. DOI: 10.1136/gutjnl-2017-313884.
    [3] FRIEDMAN SL, NEUSCHWANDER-TETRI BA, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24( 7): 908- 922. DOI: 10.1038/s41591-018-0104-9.
    [4] DAY CP, JAMES OFW. Steatohepatitis: A tale of two“hits”?[J]. Gastroenterology, 1998, 114( 4): 842- 845. DOI: 10.1016/S0016-5085(98)70599-2.
    [5] OTTERBEIN LE, FORESTI R, MOTTERLINI R. Heme oxygenase-1 and carbon monoxide in the heart: The balancing act between danger signaling and pro-survival[J]. Circ Res, 2016, 118( 12): 1940- 1959. DOI: 10.1161/CIRCRESAHA.116.306588.
    [6] FAROMBI EO, SURH YJ. Heme oxygenase-1 as a potential therapeutic target for hepatoprotection[J]. J Biochem Mol Biol, 2006, 39( 5): 479- 491. DOI: 10.5483/bmbrep.2006.39.5.479.
    [7] TAKAHASHI T, MORITA K, AKAGI R, et al. Heme oxygenase-1: A novel therapeutic target in oxidative tissue injuries[J]. Curr Med Chem, 2004, 11( 12): 1545- 1561. DOI: 10.2174/0929867043365080.
    [8] SLEBOS DJ, RYTER SW, CHOI AMK. Heme oxygenase-1 and carbon monoxide in pulmonary medicine[J]. Respir Res, 2003, 4( 1): 7. DOI: 10.1186/1465-9921-4-7.
    [9] TENHUNEN R, MARVER HS, SCHMID R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase[J]. Proc Natl Acad Sci U S A, 1968, 61( 2): 748- 755. DOI: 10.1073/pnas.61.2.748.
    [10] MAINES MD. The heme oxygenase system: A regulator of second messenger gases[J]. Annu Rev Pharmacol Toxicol, 1997, 37: 517- 554. DOI: 10.1146/annurev.pharmtox.37.1.517.
    [11] RYTER SW, ALAM J, CHOI AMK. Heme oxygenase-1/carbon monoxide: From basic science to therapeutic applications[J]. Physiol Rev, 2006, 86( 2): 583- 650. DOI: 10.1152/physrev.00011.2005.
    [12] BAUER M, BAUER I. Heme oxygenase-1: Redox regulation and role in the hepatic response to oxidative stress[J]. Antioxid Redox Signal, 2002, 4( 5): 749- 758. DOI: 10.1089/152308602760598891.
    [13] STOCKER R, YAMAMOTO Y, MCDONAGH AF, et al. Bilirubin is an antioxidant of possible physiological importance[J]. Science, 1987, 235( 4792): 1043- 1046. DOI: 10.1126/science.3029864.
    [14] BALLA G, JACOB HS, BALLA J, et al. Ferritin: A cytoprotective antioxidant strategem of endothelium[J]. J Biol Chem, 1992, 267( 25): 18148- 18153.
    [15] OTTERBEIN LE, BACH FH, ALAM J, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway[J]. Nat Med, 2000, 6( 4): 422- 428. DOI: 10.1038/74680.
    [16] IMMENSCHUH S, RAMADORI G. Gene regulation of heme oxygenase-1 as a therapeutic target[J]. Biochem Pharmacol, 2000, 60( 8): 1121- 1128. DOI: 10.1016/s0006-2952(00)00443-3.
    [17] RAJU VS, McCOUBREY WK Jr, MAINES MD. Regulation of heme oxygenase-2 by glucocorticoids in neonatal rat brain: Characterization of a functional glucocorticoid response element[J]. Biochim Biophys Acta, 1997, 1351( 1-2): 89- 104. DOI: 10.1016/s0167-4781(96)00183-2.
    [18] ABRAHAM NG, KAPPAS A. Pharmacological and clinical aspects of heme oxygenase[J]. Pharmacol Rev, 2008, 60( 1): 79- 127. DOI: 10.1124/pr.107.07104.
    [19] LYU YL, ZHENG W, WANG QH, et al. Research progress of natural active substances against metabolic associated fatty liver disease[J]. Acta Vet Zootechnica Sin, 2025, 56( 1): 45- 62.

    吕永乐, 郑雯, 王签慧, 等. 抗代谢相关脂肪性肝病的天然活性物质研究进展[J]. 畜牧兽医学报, 2025, 56( 1): 45- 62.
    [20] LOBODA A, DAMULEWICZ M, PYZA E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism[J]. Cell Mol Life Sci, 2016, 73( 17): 3221- 3247. DOI: 10.1007/s00018-016-2223-0.
    [21] YI Z, BEN DY, XU Y, et al. Herbal cake-separated moxibustion relieves aspirin induced gastric mucosal injury by activating Nrf2/ARE/HO-1 signaling in rats[J]. Acupunct Res, 2023, 48( 8): 773- 781. DOI: 10.13702/j.1000-0607.20220501.

    易展, 贲定严, 徐寅, 等. 隔药饼灸激活Nrf2/ARE/HO-1信号通路修复阿司匹林诱导的胃黏膜损伤的机制研究[J]. 针刺研究, 2023, 48( 8): 773- 781. DOI: 10.13702/j.1000-0607.20220501.
    [22] WANG XX, FAN GW, PU X, et al. To explore the mechanism of purslane on allergic contact dermatitis in mice based on NrF2/HO-1/NF-κB signaling pathway[J]. Chin J Exp Med Formul, 2025, 31( 3): 115- 123. DOI: 10.13422/j.cnki.syfjx.20241141.

    王小雪, 樊官伟, 蒲翔, 等. 基于Nrf2/HO-1/NF-κB信号通路探讨马齿苋外用对变应性接触性皮炎小鼠的作用机制[J]. 中国实验方剂学杂志, 2025, 31( 3): 115- 123. DOI: 10.13422/j.cnki.syfjx.20241141.
    [23] CHIEN MH, SHIH PC, DING YF, et al. Curcumin analog, GO-Y078, induces HO-1 transactivation-mediated apoptotic cell death of oral cancer cells by triggering MAPK pathways and AP-1 DNA-binding activity[J]. Expert Opin Ther Targets, 2022, 26( 4): 375- 388. DOI: 10.1080/14728222.2022.2061349.
    [24] GUO JT, ZHAO TT, YESIMU TLFBK, et al. Mechanistic studies on the anti-DOX cardiotoxicity of polysaccharides of Brassica rapa L. based on the regulation of Nrf2/HO-1 signaling pathway[J]. Acta Pharm Sin, 2024, 59( 4): 930- 938. DOI: 10.16438/j.0513-4870.2023-1065.

    郭君婷, 赵婷婷, 叶斯木·塔拉甫别克, 等. 基于Nrf2/HO-1信号通路调控的恰玛古多糖抗多柔比星心肌毒性的机制研究[J]. 药学学报, 2024, 59( 4): 930- 938. DOI: 10.16438/j.0513-4870.2023-1065.
    [25] FANG M, HUANG DR, ZHANG JW, et al. Tanshinone IIA exerts anti-hepatocellular carcinoma effects by inhibiting oxidative stress via PI3K/Akt and Nrf2/HO-1 signaling pathway[J]. China J Chin Mater Med, 2024, 49( 24): 6724- 6734. DOI: 10.19540/j.cnki.cjcmm.20240711.401.

    方萌, 黄冬蕊, 张晋玮, 等. 丹参酮ⅡA调控PI3K/Akt与Nrf2/HO-1信号通路抑制氧化应激发挥抗肝细胞癌作用[J]. 中国中药杂志, 2024, 49( 24): 6724- 6734. DOI: 10.19540/j.cnki.cjcmm.20240711.401.
    [26] GROSSER N, ABATE A, OBERLE S, et al. Heme oxygenase-1 induction may explain the antioxidant profile of aspirin[J]. Biochem Biophys Res Commun, 2003, 308( 4): 956- 960. DOI: 10.1016/s0006-291x(03)01504-3.
    [27] LIEBER CS. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role[J]. Drug Metab Rev, 2004, 36( 3-4): 511- 529. DOI: 10.1081/dmr-200033441.
    [28] VALKO M, RHODES CJ, MONCOL J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chem Biol Interact, 2006, 160( 1): 1- 40. DOI: 10.1016/j.cbi.2005.12.009.
    [29] LI M, KIM DH, TSENOVOY PL, et al. Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance[J]. Diabetes, 2008, 57( 6): 1526- 1535. DOI: 10.2337/db07-1764.
    [30] ALQAHTANI MJ, NEGM WA, SAAD HM, et al. Fenofibrate and Diosmetin in a rat model of testicular toxicity: New insight on their protective mechanism through PPAR-α/NRF-2/HO-1 signaling pathway[J]. Biomed Pharmacother, 2023, 165: 115095. DOI: 10.1016/j.biopha.2023.115095.
    [31] LI DD, YUAN XW, DONG SM, et al. Heme oxygenase-1 prevents non-alcoholic steatohepatitis through modulating mitochondrial quality control[J]. Acta Physiol(Oxf), 2023, 237( 3): e13918. DOI: 10.1111/apha.13918.
    [32] BAI WY, YANG Y, HUO SY, et al. Advances in research progress on the therapeutic function of biliverdin[J]. J Kunming Med Univ, 2022, 43( 6): 147- 153. DOI: 10.12259/j.issn.2095-610X.S20220601.

    白文娅, 杨渊, 霍思颖, 等. 胆绿素治疗作用的研究进展[J]. 昆明医科大学学报, 2022, 43( 6): 147- 153. DOI: 10.12259/j.issn.2095-610X.S20220601.
    [33] JIN XH, XU ZW, CAO J, et al. HO-1/EBP interaction alleviates cholesterol-induced hypoxia through the activation of the AKT and Nrf2/mTOR pathways and inhibition of carbohydrate metabolism in cardiomyocytes[J]. Int J Mol Med, 2017, 39( 6): 1409- 1420. DOI: 10.3892/ijmm.2017.2979.
    [34] VIJAYAN V, WAGENER FADTG, IMMENSCHUH S. The macrophage heme-heme oxygenase-1 system and its role in inflammation[J]. Biochem Pharmacol, 2018, 153: 159- 167. DOI: 10.1016/j.bcp.2018.02.010.
    [35] LEE TS, CHAU LY. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice[J]. Nat Med, 2002, 8( 3): 240- 246. DOI: 10.1038/nm0302-240.
    [36] WU LL, ZHENG ZQ, ZHAO M, et al. Based on Nrf2/HO-1/HIF-1α pathway, the regulatory effect of Shengjiang Powder on macrophages in EAE mice was discussed[J]. Lishizhen Med Mater Med Res, 2024, 35( 5): 1118- 1122. DOI: 10.3969/j.issn.1008-0805.2024.05.21.

    吴璐璐, 郑泽泉, 赵敏, 等. 基于Nrf2/HO-1/HIF-1α通路探讨升降散对EAE鼠巨噬细胞的调控作用[J]. 时珍国医国药, 2024, 35( 5): 1118- 1122. DOI: 10.3969/j.issn.1008-0805.2024.05.21.
    [37] NAITO Y, TAKAGI T, UCHIYAMA K, et al. Heme oxygenase-1: A novel therapeutic target for gastrointestinal diseases[J]. J Clin Biochem Nutr, 2011, 48( 2): 126- 133. DOI: 10.3164/jcbn.10-61.
    [38] KIM YM, PAE HO, PARK JE, et al. Heme oxygenase in the regulation of vascular biology: From molecular mechanisms to therapeutic opportunities[J]. Antioxid Redox Signal, 2011, 14( 1): 137- 167. DOI: 10.1089/ars.2010.3153.
    [39] KENSLER TW, WAKABAYASHI N, BISWAL S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway[J]. Annu Rev Pharmacol Toxicol, 2007, 47: 89- 116. DOI: 10.1146/annurev.pharmtox.46.120604.141046.
    [40] ZHANG MJ, AN CR, GAO YQ, et al. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection[J]. Prog Neurobiol, 2013, 100: 30- 47. DOI: 10.1016/j.pneurobio.2012.09.003.
    [41] MA C, YANG H. Role of the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway in alcoholic liver disease[J]. J Clin Hepatol, 2023, 39( 7): 1708- 1713. DOI: 10.3969/j.issn.1001-5256.2023.07.028.

    马成, 杨慧. 核因子E2相关因子2/血红素加氧酶-1(Nrf2/HO-1)信号通路在酒精性肝病中的作用[J]. 临床肝胆病杂志, 2023, 39( 7): 1708- 1713. DOI: 10.3969/j.issn.1001-5256.2023.07.028.
    [42] RUSHWORTH SA, MACEWAN DJ. HO-1 underlies resistance of AML cells to TNF-induced apoptosis[J]. Blood, 2008, 111( 7): 3793- 3801. DOI: 10.1182/blood-2007-07-104042.
    [43] OLIVEIRA CP, STEFANO JT, CAVALEIRO AM, et al. Association of polymorphisms of glutamate-cystein ligase and microsomal triglyceride transfer protein genes in non-alcoholic fatty liver disease[J]. J Gastroenterol Hepatol, 2010, 25( 2): 357- 361. DOI: 10.1111/j.1440-1746.2009.06001.x.
    [44] VOLTI GL, SACERDOTI D, SANGRAS B, et al. Carbon monoxide signaling in promoting angiogenesis in human microvessel endothelial cells[J]. Antioxid Redox Signal, 2005, 7( 5-6): 704- 710. DOI: 10.1089/ars.2005.7.704.
    [45] KIM HP, RYTER SW, CHOI AMK. CO as a cellular signaling molecule[J]. Annu Rev Pharmacol Toxicol, 2006, 46: 411- 449. DOI: 10.1146/annurev.pharmtox.46.120604.141053.
    [46] HUANG HF, PANG XY, DAI WB, et al. Chaihu Shugan Granules improve tetrachloromethane-induced acute liver injury in mice through regulating the Keap1-Nrf2/HO-1 signal pathway[J]. Chin Pharm J, 2024, 59( 8): 703- 712. DOI: 10.11669/cpj.2024.08.006.

    黄海锋, 庞晓妍, 戴卫波, 等. 柴胡疏肝颗粒调控Keap1-Nrf2/HO-1信号通路改善四氯化碳诱导的小鼠急性肝损伤[J]. 中国药学杂志, 2024, 59( 8): 703- 712. DOI: 10.11669/cpj.2024.08.006.
    [47] WAYAL V, HSIEH CC. Bioactive dipeptides mitigate high-fat and high-fructose corn syrup diet-induced metabolic-associated fatty liver disease via upregulation of Nrf2/HO-1 expressions in C57BL/6J mice[J]. Biomed Pharmacother, 2023, 168: 115724. DOI: 10.1016/j.biopha.2023.115724.
    [48] WAYAL V, WANG SD, HSIEH CC. Novel bioactive peptides alleviate Western diet-induced MAFLD in C57BL/6J mice by inhibiting NLRP3 inflammasome activation and pyroptosis via TLR4/NF-κB and Keap1/Nrf2/HO-1 signaling pathways[J]. Int Immunopharmacol, 2025, 148: 114177. DOI: 10.1016/j.intimp.2025.114177.
    [49] WAYAL V, HSIEH CC. Bioactive dipeptides mitigate high-fat and high-fructose corn syrup diet-induced metabolic-associated fatty liver disease via upregulation of Nrf2/HO-1 expressions in C57BL/6J mice[J]. Biomed Pharmacother, 2023, 168: 115724. DOI: 10.1016/j.biopha.2023.115724.
    [50] MÓZES FE, LEE JA, VALI Y, et al. Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: An individual participant data meta-analysis[J]. Lancet Gastroenterol Hepatol, 2023, 8( 8): 704- 713. DOI: 10.1016/S2468-1253(23)00141-3.
    [51] LI GY, CHEN WJ, JIA BY, et al. Di’ao Xinxuekang alleviates non-alcoholic steatohepatitis in mice by up-regulating Nrf2/HO-1 signaling pathway[J]. China J Chin Mater Med, 2022, 47( 9): 2491- 2499. DOI: 10.19540/j.cnki.cjcmm.20211115.401.

    李国莺, 陈文静, 贾步云, 等. 地奥心血康上调Nrf2/HO-1信号通路改善小鼠非酒精性脂肪性肝炎的实验研究[J]. 中国中药杂志, 2022, 47( 9): 2491- 2499. DOI: 10.19540/j.cnki.cjcmm.20211115.401.
  • 加载中
图(1)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  31
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-07
  • 录用日期:  2024-11-08
  • 出版日期:  2025-05-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回