急性失代偿肝硬化合并感染的凝血异常: 基于血栓弹力图的前瞻性观察性研究
DOI: 10.12449/JCH250516
Coagulation abnormalities in acute decompensated cirrhosis comorbid with infection: A prospective observational study based on thromboelastography
-
摘要:
目的 观察急性失代偿期肝硬化(ADC)患者伴或不伴脓毒血症时的凝血系统变化,并探讨这些变化与短期预后的关系。 方法 前瞻性纳入2021年1月—2023年7月在南方医院就诊的ADC住院患者116例,其中合并脓毒血症者86例,未合并脓毒血症者30例,同时纳入无慢性肝病的单纯脓毒血症患者54例作为对照组。通过血栓弹力图(TEG)及其他常规凝血指标全面评估患者的凝血功能。收集TEG测试结果及患者的短期预后等数据,并进行相关性分析。正态分布的计量资料两组间比较采用成组t检验;非正态分布的计量资料两组间比较采用Mann-Whitney U检验。计数资料两组间比较采用χ2检验。采用Spearman相关系数评估不同变量间的相关性。采用Logistic回归模型进行单因素及多因素分析。 结果 在ADC合并脓毒血症的患者中,感染部位以肺部和血流为主,细菌为主要病原微生物。TEG检测结果显示,与单纯脓毒血症患者比较,ADC合并脓毒血症患者的MA值中位数显著降低,K时间显著延长,α角显著减小(P值均<0.05);与单纯ADC患者相比,ADC合并脓毒血症患者的R时间显著延长(P=0.02),而单纯脓毒血症患者的R时间高于ADC合并脓毒血症患者(P=0.04)。在ADC合并脓毒血症患者中,MA值与血小板计数无相关性(r=-0.133,P=0.057),但在单纯脓毒血症患者中显著相关(r=0.595,P=0.001);SOFA评分与MA值在伴或不伴ADC的脓毒血症患者中均呈负相关(r值分别为-0.503、-0.561,P值均<0.001),而ADC合并脓毒血症患者的R时间、K时间和α角与SOFA评分相关性较弱,与APTT相关性较强(P值均<0.05)。单纯ADC患者90天内全部存活,而单纯脓毒血症存活患者的MA值和α角均显著高于死亡组(P值均<0.05);无论是否合并ADC,α角在90天生存与死亡组间均差异显著(P值均<0.01),但ADC合并脓毒血症组的MA值在90天生存与死亡组间差异无统计学意义(P>0.05)。 结论 对于合并脓毒血症的ADC患者,临床上应重视凝血系统功能的评估和监测,必要时进行TEG相应指标和器官衰竭评分的监测,以制订个体化的治疗方案。 Abstract:Objective To investigate the changes in coagulation system in acute decompensated cirrhosis (ADC) patients with or without sepsis and the association of these changes with short-term prognosis. Methods A prospective study was conducted among 116 ADC patients who were hospitalized in Nanfang Hospital from January 2021 to July 2023, among whom there were 86 patients with sepsis and 30 patients without sepsis, and 54 patients with sepsis alone who had no chronic liver disease were enrolled as control group. Thromboelastography (TEG) and other conventional coagulation parameters were used to comprehensively evaluate the coagulation function of patients. The data including TEG results and short-term prognosis were collected, and a correlation analysis was performed. The independent-samples t test was used for comparison of normally distributed continuous data between two groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups; the chi-square test was used for comparison of categorical data between two groups. The Spearman correlation coefficient was calculated to investigate the correlation between different variables. The Logistic regression model was used to perform the univariate and multivariate analyses. Results For the ADC patients with sepsis, the lungs and bloodstream were the main infection sites, and bacteria were the main pathogenic microorganism. TEG results showed that compared with the patients with sepsis alone, the patients with ADC and sepsis had a significant reduction in median maximum amplitude (MA), a significant increase in coagulation time (K time), and a significant reduction in α angle (all P<0.05); the patients with ADC and sepsis had a significantly longer reaction time (R time) than those with ADC alone (P=0.02), and the patients with sepsis alone had a significantly longer R time than those with ADC and sepsis (P=0.04). There was no correlation between MA and platelet count in the patients with ADC and sepsis (r=-0.133, P=0.057), while there was a significant correlation between MA and platelet count in the patients with sepsis alone (r=0.595, P=0.001). SOFA score was negatively correlated with MA in sepsis patients with or without ADC (r=-0.503 and -0.561, both P<0.001), and for the patients with ADC and sepsis, R time, K time, and α angle were weakly correlated with SOFA score and had a relatively strong correlation with APTT (all P<0.05). The patients with ADC alone all survived within 90 days, and compared with the death group, the patients with sepsis alone who survived had significantly higher values of MA and α angle (all P<0.05); there was a significant difference in α angle on day 90 between the survival group and the death group, no matter whether the patients were comorbid with ADC or not (both P<0.01), while for the patients with ADC and sepsis, there was no significant difference in MA value on day 90 between the survival group and the death group (P>0.05). Conclusion For ADC patients comorbid with sepsis, coagulation function assessment and monitoring should be taken seriously in clinical practice, and TEG parameters and SOFA score should be monitored when necessary to develop individualized treatment regimens. -
Key words:
- Liver Cirrhosis /
- Blood Coagulation /
- Sepsis /
- Thromboelastogram
-
表 1 3组患者基线特征
Table 1. Baseline characteristics of three groups of patients
项目 ADC+脓毒血症组(n=86) 单纯ADC组(n=30) 单纯脓毒血症组(n=54) 年龄(岁) 49(41~56) 51(45~62) 62(52~73) 男[例(%)] 67(77.9) 24(80.0) 27(50.0) 器官衰竭(例) 肝衰竭 32 2 8 循环衰竭 6 0 17 呼吸衰竭 8 0 16 心衰竭 2 0 10 肾衰竭 3 0 12 大脑衰竭 14 0 4 SOFA评分(分) 4(3~6) 3(3~4) 7(3~10) APACHEⅡ评分(分) 6(3~9) 3(2~4) 18(11~27) 实验室指标 白细胞(×109/L) 7.2(4.4~10.0) 3.5(2.8~5.8) 11.8(8.6~21.5) 中性粒细胞(×109/L) 4.2(2.6~6.3) 1.7(1.2~3.2) 9.7(5.9~17.4) 血小板(×109/L) 73(56~110) 52(41~63) 113(70~288) 总胆红素(μmol/L) 307(68~465) 72(35~258) 25(10~67) 血肌酐(μmol/L) 76(59~104) 67(54~83) 106(69~231) C反应蛋白(mg/L) 12.4(6.0~22.1) 5.7(2.3~10.8) 64.7(27.7~149.5) 凝血酶原时间(s) 23.8(15.4~28.2) 18.4(16.0~19.7) 13.5(12.3~15.4) INR 2.15(1.38~2.57) 1.64(1.42~1.75) 1.17(1.06~1.34) 纤维蛋白原(g/L) 1.5(0.9~2.0) 1.3(1.2~1.7) 3.4(2.0~4.8) D-Dimer(μg/mL) 3.3(1.9~4.8) 1.7(0.6~4.1) 5.6(3.8~8.4) TEG参数 MA值(mm) 29.4(18.6~40.7) 31.6(25.1~39.9) 42.3(27.8~63.4) R时间(s) 5.4(4.2~6.5) 4.9(4.2~5.5) 5.3(4.2~7.2) K时间(s) 2.9(1.9~4.2) 3.9(2.6~5.1) 1.2(1.2~2.2) α角(°) 56.7(46.3~64.6) 53.1(47.8~59.5) 69.8(61.1~73.7) 表 2 ADC+脓毒血症患者和单纯脓毒血症患者感染情况
Table 2. Different infection situations between acute decompensation cirrhosis and simple sepsis patients
项目 ADC+脓毒血症组
(n=86)
单纯脓毒血症组
(n=54)
感染部位[例(%)] 肺部感染 42(48.8) 32(59.3) 泌尿系感染 8(9.3) 10(18.5) 血培养 16(18.6) 28(51.9) 腹膜感染 16(18.6) 7(13.0) 其他 14(16.3) 12(22.2) 微生物学[例(%)] 革兰阴性菌 22(25.6) 21(38.9) 革兰阳性菌 24(27.9) 24(44.4) 病毒 8(9.3) 8(14.8) 真菌 9(10.5) 15(27.8) 其他 19(22.1) 10(18.5) 两种以上 30(34.9) 34(63.0) 表 3 ADC+脓毒血症患者28天及90天病死率的Logistic回归分析
Table 3. Logistic regression analysis of 28-day and 90-day mortality in patients with ADC complicated with sepsis
项目 单因素分析 多因素分析 HR 95%CI P值 HR 95%CI P值 28天 年龄 0.897 0.844~0.913 0.572 0.913 0.844~0.988 0.023 AST 0.988 0.970~0.995 0.001 0.983 0.970~0.995 0.007 APTT 0.964 0.813~0.979 0.040 0.892 0.813~0.979 0.017 α角 1.025 0.993~1.135 0.189 1.062 0.993~1.135 0.079 90天 年龄 0.907 0.812~0.962 0.141 0.884 0.812~0.962 0.004 AST 0.991 0.974~0.996 0.010 0.985 0.974~0.996 0.006 APTT 0.949 0.830~0.981 0.006 0.902 0.830~0.981 0.015 α角 1.027 0.995~1.108 0.144 1.050 0.995~1.108 0.074 表 4 单纯脓毒血症患者28天及90天病死率的Logistic回归分析
Table 4. Logistic regression analysis of 28-day and 90-day mortality in patients with sepsis
项目 单因素分析 多因素分析 HR 95%CI P值 HR 95%CI P值 28天 中性粒细胞计数 0.874 0.781~0.963 <0.001 0.855 0.766~0.954 0.005 APTT 0.900 0.752~0.993 0.010 0.864 0.752~0.993 0.014 MA值 1.066 1.017~1.135 <0.001 1.053 1.026~1.165 0.006 90天 中性粒细胞计数 0.925 0.785~1.024 0.109 0.897 0.785~1.024 0.109 APTT 0.781 0.403~0.867 <0.001 0.751 0.403~0.867 0.004 MA值 1.037 1.047~1.276 <0.001 1.155 1.047~1.276 0.007 -
[1] MOREAU R, JALAN R, GINES P, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis[J]. Gastroenterology, 2013, 144( 7): 1426- 1437. DOI: 10.1053/j.gastro.2013.02.042. [2] BAJAJ JS, O’LEARY JG, RAJENDER REDDY K, et al. Survival in infection-related acute-on-chronic liver failure is defined by extrahepatic organ failures[J]. Hepatology, 2014, 60( 1): 250- 256. DOI: 10.1002/hep.27077. [3] LISMAN T, HERNANDEZ-GEA V, MAGNUSSON M, et al. The concept of rebalanced hemostasis in patients with liver disease: Communication from the ISTH SSC working group on hemostatic management of patients with liver disease[J]. J Thromb Haemost, 2021, 19( 4): 1116- 1122. DOI: 10.1111/jth.15239. [4] WONG F, BERNARDI M, BALK R, et al. Sepsis in cirrhosis: Report on the 7th meeting of the International Ascites Club[J]. Gut, 2005, 54( 5): 718- 725. DOI: 10.1136/gut.2004.038679. [5] FERNÁNDEZ J, ACEVEDO J, WIEST R, et al. Bacterial and fungal infections in acute-on-chronic liver failure: Prevalence, characteristics and impact on prognosis[J]. Gut, 2018, 67( 10): 1870- 1880. DOI: 10.1136/gutjnl-2017-314240. [6] PLESSIER A, DENNINGER MH, CONSIGNY Y, et al. Coagulation disorders in patients with cirrhosis and severe sepsis[J]. Liver Int, 2003, 23( 6): 440- 448. DOI: 10.1111/j.1478-3231.2003.00870.x. [7] KUROKAWA T, ZHENG YW, OHKOHCHI N. Novel functions of platelets in the liver[J]. J Gastroenterol Hepatol, 2016, 31( 4): 745- 751. DOI: 10.1111/jgh.13244. [8] MANDORFER M, SCHWABL P, PATERNOSTRO R, et al. Von Willebrand factor indicates bacterial translocation, inflammation, and procoagulant imbalance and predicts complications independently of portal hypertension severity[J]. Aliment Pharmacol Ther, 2018, 47( 7): 980- 988. DOI: 10.1111/apt.14522. [9] AFDHAL NH, GIANNINI EG, TAYYAB G, et al. Eltrombopag before procedures in patients with cirrhosis and thrombocytopenia[J]. N Engl J Med, 2012, 367( 8): 716- 724. DOI: 10.1056/NEJMoa1110709. [10] VINCENT JL, MORENO R, TAKALA J, et al. The SOFA(Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine[J]. Intensive Care Med, 1996, 22( 7): 707- 710. DOI: 10.1007/BF01709751. [11] KUMAR M, AHMAD J, MAIWALL R, et al. Thromboelastography-guided blood component use in patients with cirrhosis with nonvariceal bleeding: A randomized controlled trial[J]. Hepatology, 2020, 71( 1): 235- 246. DOI: 10.1002/hep.30794. [12] IBA T, LEVY JH, RAJ A, et al. Advance in the management of sepsis-induced coagulopathy and disseminated intravascular coagulation[J]. J Clin Med, 2019, 8( 5): 728. DOI: 10.3390/jcm8050728. [13] MÜLLER MC, MEIJERS JCM, VROOM MB, et al. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: A systematic review[J]. Crit Care, 2014, 18( 1): R30. DOI: 10.1186/cc13721. [14] LUO CZ, HU HB, GONG J, et al. The value of thromboelastography in the diagnosis of sepsis-induced coagulopathy[J]. Clin Appl Thromb Hemost, 2020, 26: 1076029620951847. DOI: 10.1177/1076029620951847. [15] ANDERSEN MG, HVAS CL, TØNNESEN E, et al. Thromboelastometry as a supplementary tool for evaluation of hemostasis in severe sepsis and septic shock[J]. Acta Anaesthesiol Scand, 2014, 58( 5): 525- 533. DOI: 10.1111/aas.12290. [16] BAGLIN T. Using the laboratory to predict recurrent venous thrombosis[J]. Int J Lab Hematol, 2011, 33( 4): 333- 342. DOI: 10.1111/j.1751-553X.2011.01345.x. [17] GIRDAUSKAS E, KEMPFERT J, KUNTZE T, et al. Thromboelastometrically guided transfusion protocol during aortic surgery with circulatory arrest: A prospective, randomized trial[J]. J Thorac Cardiovasc Surg, 2010, 140( 5): 1117- 1124. e 2. DOI: 10.1016/j.jtcvs.2010.04.043. [18] AKAY OM, USTUNER Z, CANTURK Z, et al. Laboratory investigation of hypercoagulability in cancer patients using rotation thrombelastography[J]. Med Oncol, 2009, 26( 3): 358- 364. DOI: 10.1007/s12032-008-9129-0. [19] BLASI A, PATEL VC, ADELMEIJER J, et al. Mixed fibrinolytic phenotypes in decompensated cirrhosis and acute-on-chronic liver failure with hypofibrinolysis in those with complications and poor survival[J]. Hepatology, 2020, 71( 4): 1381- 1390. DOI: 10.1002/hep.30915. [20] JIANG XH, CHAI SQ, HUANG Y, et al. Design for a multicentre prospective cohort for the assessment of platelet function in patients with hepatitis-B-virus-related acute-on-chronic liver failure[J]. Clin Epidemiol, 2022, 14: 997- 1011. DOI: 10.2147/CLEP.S376068. [21] GU WY, XU BY, ZHENG X, et al. Acute-on-chronic liver failure in China: Rationale for developing a patient registry and baseline characteristics[J]. Am J Epidemiol, 2018, 187( 9): 1829- 1839. DOI: 10.1093/aje/kwy083. [22] QIAO L, WANG XB, DENG GH, et al. Cohort profile: A multicentre prospective validation cohort of the Chinese Acute-on-Chronic Liver Failure(CATCH-LIFE) study[J]. BMJ Open, 2021, 11( 1): e037793. DOI: 10.1136/bmjopen-2020-037793. [23] ELTING LS, RUBENSTEIN EB, MARTIN CG, et al. Incidence, cost, and outcomes of bleeding and chemotherapy dose modification among solid tumor patients with chemotherapy-induced thrombocytopenia[J]. J Clin Oncol, 2001, 19( 4): 1137- 1146. DOI: 10.1200/JCO.2001.19.4.1137. [24] SARIN SK, CHOUDHURY A, SHARMA MK, et al. Acute-on-chronic liver failure: Consensus recommendations of the Asian Pacific association for the study of the liver(APASL): An update[J]. Hepatol Int, 2019, 13( 4): 353- 390. DOI: 10.1007/s12072-019-09946-3. [25] CHOUDHURY A, KUMAR M, SHARMA BC, et al. Systemic inflammatory response syndrome in acute-on-chronic liver failure: Relevance of‘golden window’: A prospective study[J]. J Gastroenterol Hepatol, 2017, 32( 12): 1989- 1997. DOI: 10.1111/jgh.13799. [26] HERBSTREIT F, WINTER EM, PETERS J, et al. Monitoring of haemostasis in liver transplantation: Comparison of laboratory based and point of care tests[J]. Anaesthesia, 2010, 65( 1): 44- 49. DOI: 10.1111/j.1365-2044.2009.06159.x. [27] ZHOU WY, ZHOU WJ, BAI JJ, et al. TEG in the monitoring of coagulation changes in patients with sepsis and the clinical significance[J]. Exp Ther Med, 2019, 17( 5): 3373- 3382. DOI: 10.3892/etm.2019.7342. [28] PREMKUMAR M, MEHTANI R, DIVYAVEER S, et al. Clinical validation of global coagulation tests to guide blood component transfusions in cirrhosis and ACLF[J]. J Clin Transl Hepatol, 2021, 9( 2): 210- 219. DOI: 10.14218/JCTH.2020.00121. -