中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微阵列数据的circRNA-miRNA-mRNA竞争性内源RNA网络构建及其与自身免疫性肝炎小鼠模型肝损伤的相关性分析

郭地 刘莹 刘杨

引用本文:
Citation:

基于微阵列数据的circRNA-miRNA-mRNA竞争性内源RNA网络构建及其与自身免疫性肝炎小鼠模型肝损伤的相关性分析

DOI: 10.12449/JCH250513
基金项目: 

国家中医药管理局高水平中医药重点学科建设项目 (2024);

中西医结合防治风湿免疫病山西省科技创新人才重点团队 (202204051002033);

山西省科学技术厅山西省重点国别科技合作项目 (202104041101013);

山西省应用基础研究计划青年科学基金项目 (202203021222272);

山西省中医药管理局科研项目 (2024ZYYAD008);

山西中医药大学科技创新团队项目 (2022TD2003);

中西医结合治疗风湿免疫疾病重点实验室 (zyyyjs2024021)

伦理学声明:本研究方案于2024年3月11日经由山西中医药大学实验动物伦理委员会审批,批号:AWE202403147,符合实验室动物管理与使用准则。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:郭地负责课题设计,资料分析,撰写论文;刘莹参与数据收集和论文修改;刘杨负责拟定写作思路,指导论文撰写,并最终定稿。
详细信息
    通信作者:

    刘杨, liuyang1980@sxtcm.edu.cn (ORCID: 0000-0002-6627-5002)

Construction of a circRNA-miRNA-mRNA competitive endogenous RNA network based on microarray data and its correlation with liver injury in a mouse model of autoimmune hepatitis

Research funding: 

The Construction Project of High-level Traditional Chinese Medicine Key Discipline of National Administration of Traditional Chinese Medicine (2024) (2024);

Key Team of Scientific and Technological Innovation Talents of Shanxi Province with Integrated Traditional Chinese and Western Medicine for Preventing and Treating Rheumatological Diseases (202204051002033);

Special Project with Important Nations of Scientific and Technological Cooperation and Exchange of Shanxi Province (202104041101013);

Youth Science and Technology Research Fund of Applied Basic Research Program of Shanxi Province (202203021222272);

Scientific Research Project of Administration of Traditional Chinese Medicine in Shanxi Province (2024ZYYAD008);

Science and Technology Innovation Project of Shanxi University of Chinese Medicine (2022TD2003);

Key Laboratory of Rheumatological and Immunological Diseases Treated by Integrated Chinese and Western Medicine (zyyyjs2024021)

More Information
  • 摘要:   目的  构建环状RNA(circRNA)-微小RNA(miRNA)-信使RNA(mRNA)竞争性内源RNA(ceRNA)网络,探讨其在刀豆蛋白A诱导的自身免疫性肝炎(AIH)小鼠模型中的潜在调控机制,并验证关键基因的表达与肝损伤的关系。  方法  使用高通量数据筛选差异表达的circRNA、miRNA和mRNA,基于Pearson相关分析和Miranda程序预测miRNA与mRNA及circRNA的配对关系,构建ceRNA网络。对网络中的差异表达基因进行GO和KEGG富集分析。选取SPF级雄性C57BL/6小鼠12只,采用随机数字表法分为对照组和模型组,每组6只,模型组通过尾静脉注射刀豆蛋白A构建AIH小鼠模型,对照组注射生理盐水。通过qRT-PCR和Western Blot方法验证circ_0001577、miR-7055-3p和Akt3的表达。测定血清转氨酶(ALT、AST)和肝组织中丙二醛(MDA)及一氧化氮(NO)含量,并分析其与基因表达的相关性。计量资料两组间比较采用成组t检验。使用Spearman相关分析法分析基因表达与肝损伤指标之间的相关性。  结果  构建了包含5 795个circRNA-miRNA-mRNA配对的ceRNA网络,发现circ_0001577为中心基因。与对照组小鼠比较,模型组中的circ_0001577和Akt3表达上调,miR-7055-3p下调,差异均有统计学意义(P值均<0.05),且circ_0001577与Akt3呈正相关(r=0.861,P<0.001),miR-7055-3p与两者呈负相关(r值分别为-0.644、-0.855,P值均<0.05)。模型组小鼠肝脏Akt3蛋白表达显著高于对照组(1.04±0.10 vs 0.72±0.06,t=-6.49,P=0.001),并与circ_0001577呈正相关(r=0.579,P=0.048),与miR-7055-3p呈负相关(r=-0.891,P<0.001)。模型组小鼠血清ALT、AST和肝组织MDA、NO含量较对照组均显著增加(P值均<0.05),上述肝损伤指标与circ_0001577、Akt3呈正相关(r值分别为0.849、0.865、0.811、0.801;0.889、0.954、0.938、0.961,P值均<0.05),与miR-7055-3p呈负相关(r值分别为-0.687、-0.818、-0.833、-0.870,P值均<0.05),且与Akt蛋白表达呈正相关(r值分别为0.648、0.796、0.848、0.860,P值均<0.05)。  结论  circ_0001577通过竞争性吸附miR-7055-3p,导致Akt3抑制被解除,进而促进Akt3的表达,参与AIH的发生发展。circ_0001577及其相关通路可能成为AIH的潜在治疗靶点。

     

  • 注: a,ceRNA网络由前200个circRNA-miRNA-mRNA配对组成。绿色菱形、黄色三角形和粉色圆形节点分别代表DEC、DEMi和DEM。蓝色线条表示基因间的调控关系。b,miR-101c、miR-1927、miR-7055-3p、miR-802-5p和miR-877-3p在circ_0001577 序列上的预测结合位点。红色圆圈表示circ_0001577的序列,每条蓝色短线表示目标miRNA的结合位点。

    图  1  ceRNA网络的构建

    Figure  1.  Constructed ceRNA network

    注: a,按P值升序排列的前10个不同类别的GO术语;b,按P值升序排列的所有GO术语中的前30个。

    图  2  GO富集分析

    Figure  2.  GO enrichment analysis

    图  3  KEGG信号通路分析

    Figure  3.  KEGG signaling pathway analysis

    注: a,circ_0001577、miR-7055-3p和Akt3在两组中的相对表达水平;b~d,miR-7055-3p、circ_0001577和Akt3在转录水平上表达的相关性。

    图  4  选择基因的相对表达量及相关性

    Figure  4.  Relative expression and correlation of the selected genes

    注: C1~6为对照组6只小鼠;M1~6为模型组6只小鼠。

    图  5  Akt3蛋白的相对表达

    Figure  5.  Relative expression of Akt3 protein

    注: a,Akt3蛋白与circ_0001577;b,Akt3蛋白与miR-7055-3p。

    图  6  Akt3蛋白表达与circ_0001577、miR-7055-3p之间的相关性

    Figure  6.  Correlation between expression of Akt3 protein and circ_0001577, miR-7055-3p

    注: a,血清AST和ALT水平;b,肝组织中MDA含量;c,肝组织中NO含量。

    图  7  肝损伤指标的比较

    Figure  7.  Comparison of indicators of liver injury

    注: a,circ_0001577与ALT;b,circ_0001577与AST;c,circ_0001577与MDA;d,circ_0001577与NO。

    图  8  circ_0001577表达与肝损伤指标之间的相关性

    Figure  8.  Correlation between expression of circ_0001577 and liver injury indicators

    注: a,miR-7055-3p与ALT;b,miR-7055-3p与AST;c,miR-7055-3p与MDA;d,miR-7055-3p与NO。

    图  9  miR-7055-3p表达与肝损伤指标之间的相关性

    Figure  9.  Correlation between expression of miR-7055-3p and liver injury indicators

    注: a,Akt3与ALT;b,Akt3与AST;c,Akt3与MDA;d,Akt3与NO。

    图  10  Akt3表达与肝损伤指标之间的相关性

    Figure  10.  Correlation between expression of Akt3 and liver injury indicators

    注: a,Akt3蛋白与ALT;b,Akt3蛋白与AST;c,Akt3蛋白与MDA;d,Akt3蛋白与NO。

    图  11  Akt3蛋白表达与肝损伤指标之间的相关性

    Figure  11.  Correlation between expression of Akt3 protein and liver injury indicators

    表  1  用于qRT-PCR验证的基因特征

    Table  1.   Gene characteristics for qRT-PCR validation

    基因 编号 染色体 FC P 调控情况
    circ_0001577 chr7 2.35 9.04×10-5 上调
    miR-7055-3p MIMAT0028015 chr7 -6.37 6.83×10-3 下调
    Akt3 XM_006496821.3 chr1 2.31 3.85×10-4 上调
    下载: 导出CSV

    表  2  引物序列

    Table  2.   Primer sequences

    基因 引物(5'-3') 长度(bp)
    circ_0001577 F:TGATTATGTCCAGGCCCTTC 141
    R:TATCTCACAGGCACCCTCAAC
    miR-7055-3p RT:CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTGGTGGG 21
    F:ACACTCCAGCTGGGTTGCTACTTTGATAC
    R:TGGTGTCGTGGAGTCG
    Akt3 F:CATTGCTTTCAGGGCTCTTG 246
    R:TGCCGTCGTCGTCATACTTT
    GAPDH F:GGTTGTCTCCTGCGACTTCA 183
    R:TGGTCCAGGGTTTCTTACTCC
    U6 F:CTCGCTTCGGCAGCACA 96
    R:AACGCTTCACGAATTTGCGT
    下载: 导出CSV

    表  3  按ceRNA评分降序排列的前10个ceRNA配对

    Table  3.   Top 10 ceRNA pairs in descending order of ceRNA Score

    mRNA circRNA 共有miRNA P ceRNA得分
    XM_006519062.2 circ_0001577 miR-7055-3p <0.001 0.017 2
    miR-101c
    miR-877-3p
    miR-1927
    miR-802-5p
    XM_017318309.1 circ_0001577 miR-7055-3p <0.001 0.014 5
    miR-101c
    miR-877-3p
    miR-1927
    miR-802-5p
    XM_017314716.1 circ_0001577 miR-877-3p 0.026 0.014 4
    miR-802-5p
    miR-1927
    miR-7055-3p
    XM_006495688.3 circ_0001577 miR-877-3p 0.019 0.013 5
    miR-802-5p
    miR-1927
    miR-7055-3p
    XM_006495684.3 circ_0001577 miR-877-3p 0.019 0.013 5
    miR-802-5p
    miR-1927
    miR-7055-3p
    XM_006495682.2 circ_0001577 miR-877-3p 0.019 0.013 5
    miR-802-5p
    miR-1927
    miR-7055-3p
    NM_133833.3 circ_0001577 miR-877-3p 0.019 0.013 5
    miR-802-5p
    miR-1927
    miR-7055-3p
    XM_017314712.1 circ_0001577 miR-877-3p 0.019 0.013 5
    miR-802-5p
    miR-1927
    miR-7055-3p
    XM_017314794.1 circ_0001577 miR-877-3p 0.014 0.012 5
    miR-802-5p
    miR-1927
    miR-7055-3p
    XM_017314741.1 circ_0001577 miR-877-3p 0.014 0.012 5
    miR-802-5p
    miR-1927
    miR-7055-3p
    下载: 导出CSV
  • [1] European Association for the Study of the Liver. EASL clinical practice guidelines: Autoimmune hepatitis[J]. J Hepatol, 2015, 63( 4): 971- 1004. DOI: 10.1016/j.jhep.2015.06.030.
    [2] DALEKOS GN, KOSKINAS J, PAPATHEODORIDIS GV. Hellenic association for the study of the liver clinical practice guidelines: Autoimmune hepatitis[J]. Ann Gastroenterol, 2019, 32( 1): 1- 23. DOI: 10.20524/aog.2018.0330.
    [3] KOMORI A. Recent updates on the management of autoimmune hepatitis[J]. Clin Mol Hepatol, 2021, 27( 1): 58- 69. DOI: 10.3350/cmh.2020.0189.
    [4] WANG HX, LIU M, WENG SY, et al. Immune mechanisms of Concanavalin A model of autoimmune hepatitis[J]. World J Gastroenterol, 2012, 18( 2): 119- 125. DOI: 10.3748/wjg.v18.i2.119.
    [5] FLOREANI A, RESTREPO-JIMÉNEZ P, SECCHI MF, et al. Etiopathogenesis of autoimmune hepatitis[J]. J Autoimmun, 2018, 95: 133- 143. DOI: 10.1016/j.jaut.2018.10.020.
    [6] TANAKA A. Autoimmune hepatitis: 2019 update[J]. Gut Liver, 2020, 14( 4): 430- 438. DOI: 10.5009/gnl19261.
    [7] LIU Y, LI ZC, HAO JH, et al. Circular RNAs associated with a mouse model of concanavalin A-induced autoimmune hepatitis: Preliminary screening and comprehensive functional analysis[J]. FEBS Open Bio, 2020, 10( 11): 2350- 2362. DOI: 10.1002/2211-5463.12981.
    [8] SALZMAN J. Circular RNA expression: Its potential regulation and function[J]. Trends Genet, 2016, 32( 5): 309- 316. DOI: 10.1016/j.tig.2016.03.002.
    [9] ZHANG Y, ZHANG XO, CHEN T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51( 6): 792- 806. DOI: 10.1016/j.molcel.2013.08.017.
    [10] HE L, MAN CF, XIANG SY, et al. Circular RNAs’ cap-independent translation protein and its roles in carcinomas[J]. Mol Cancer, 2021, 20( 1): 119. DOI: 10.1186/s12943-021-01417-4.
    [11] DONG ZR, KE AW, LI T, et al. CircMEMO1 modulates the promoter methylation and expression of TCF21 to regulate hepatocellular carcinoma progression and sorafenib treatment sensitivity[J]. Mol Cancer, 2021, 20( 1): 75. DOI: 10.1186/s12943-021-01361-3.
    [12] QU SB, YANG XS, LI XL, et al. Circular RNA: A new star of noncoding RNAs[J]. Cancer Lett, 2015, 365( 2): 141- 148. DOI: 10.1016/j.canlet.2015.06.003.
    [13] ZHANG MY, WANG JB, ZHU ZW, et al. Differentially expressed circular RNAs in systemic lupus erythematosus and their clinical significance[J]. Biomed Pharmacother, 2018, 107: 1720- 1727. DOI: 10.1016/j.biopha.2018.08.161.
    [14] YANG X, LI J, WU Y, et al. Aberrant dysregulated circular RNAs in the peripheral blood mononuclear cells of patients with rheumatoid arthritis revealed by RNA sequencing: Novel diagnostic markers for RA[J]. Scand J Clin Lab Invest, 2019, 79( 8): 551- 559. DOI: 10.1080/00365513.2019.1674004.
    [15] LIU Y, CHEN H, HAO JH, et al. Characterization and functional prediction of the microRNAs differentially expressed in a mouse model of concanavalin A-induced autoimmune hepatitis[J]. Int J Med Sci, 2020, 17( 15): 2312- 2327. DOI: 10.7150/ijms.47766.
    [16] LIU Y, CHEN H, HAO JH, et al. Microarray-based transcriptional profiling of a mouse model of autoimmune hepatitis[J]. FEBS Open Bio, 2020, 10( 10): 2040- 2054. DOI: 10.1002/2211-5463.12953.
    [17] WANG HY, RADOMSKA HS, PHELPS MA, et al. Replication study: Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs[J]. eLife, 2020, 9: e56651. DOI: 10.7554/eLife.56651.
    [18] PHELPS M, COSS C, WANG HY, et al. Registered report: Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs[J]. eLife, 2016, 5: e12470. DOI: 10.7554/eLife.12470.
    [19] LIU K, YAN ZM, LI YC, et al. Linc2GO: A human LincRNA function annotation resource based on ceRNA hypothesis[J]. Bioinformatics, 2013, 29( 17): 2221- 2222. DOI: 10.1093/bioinformatics/btt361.
    [20] RITCHIE ME, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43( 7): e47. DOI: 10.1093/nar/gkv007.
    [21] The Gene Ontology Consortium. The gene ontology resource: 20 years and still GOing strong[J]. Nucleic Acids Res, 2019, 47( D1): D330- D338. DOI: 10.1093/nar/gky1055.
    [22] MI HY, HUANG XS, MURUGANUJAN A, et al. PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements[J]. Nucleic Acids Res, 2017, 45( D1): D183- D189. DOI: 10.1093/nar/gkw1138.
    [23] YANG J, WANG B, WANG Y, et al. Exosomes derived from adipose mesenchymal stem cells carrying miRNA-22-3p promote schwann cells proliferation and migration through downregulation of PTEN[J]. Dis Markers, 2022, 2022: 7071877. DOI: 10.1155/2022/7071877.
    [24] JU J, LI XM, ZHAO XM, et al. Circular RNA FEACR inhibits ferroptosis and alleviates myocardial ischemia/reperfusion injury by interacting with NAMPT[J]. J Biomed Sci, 2023, 30( 1): 45. DOI: 10.1186/s12929-023-00927-1.
    [25] ASHWAL-FLUSS R, MEYER M, PAMUDURTI NR, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56( 1): 55- 66. DOI: 10.1016/j.molcel.2014.08.019.
    [26] TAY Y, RINN J, PANDOLFI PP. The multilayered complexity of ceRNA crosstalk and competition[J]. Nature, 2014, 505( 7483): 344- 352. DOI: 10.1038/nature12986.
    [27] PASQUINELLI AE. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship[J]. Nat Rev Genet, 2012, 13( 4): 271- 282. DOI: 10.1038/nrg3162.
    [28] HANSEN TB, JENSEN TI, CLAUSEN BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495( 7441): 384- 388. DOI: 10.1038/nature11993.
    [29] SALMENA L, POLISENO L, TAY Y, et al. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language?[J]. Cell, 2011, 146( 3): 353- 358. DOI: 10.1016/j.cell.2011.07.014.
    [30] YANG N, WANG L, CHEN TX, et al. ZNF521 which is downregulated by miR-802 suppresses malignant progression of hepatocellular carcinoma through regulating Runx2 expression[J]. J Cancer, 2020, 11( 19): 5831- 5839. DOI: 10.7150/jca.45190.
    [31] HAO PY, WAXMAN DJ. Functional roles of sex-biased, growth hormone-regulated microRNAs miR-1948 and miR-802 in young adult mouse liver[J]. Endocrinology, 2018, 159( 3): 1377- 1392. DOI: 10.1210/en.2017-03109.
    [32] SEOK S, SUN H, KIM YC, et al. Defective FXR-SHP regulation in obesity aberrantly increases miR-802 expression, promoting insulin resistance and fatty liver[J]. Diabetes, 2021, 70( 3): 733- 744. DOI: 10.2337/db20-0856.
    [33] ZHAO XY, LI SJ, WANG Z, et al. miR-101-3p negatively regulates inflammation in systemic lupus erythematosus via MAPK1 targeting and inhibition of the NF-κB pathway[J]. Mol Med Rep, 2021, 23( 5): 359. DOI: 10.3892/mmr.2021.11998.
    [34] YAO YF, WANG H, XI XQ, et al. miR-150 and SRPK1 regulate AKT3 expression to participate in LPS-induced inflammatory response[J]. Innate Immun, 2021, 27( 4): 343- 350. DOI: 10.1177/17534259211018800.
    [35] SHI JS, JIANG K, LI ZD. miR-145 ameliorates neuropathic pain via inhibiting inflammatory responses and mTOR signaling pathway by targeting Akt3 in a rat model[J]. Neurosci Res, 2018, 134: 10- 17. DOI: 10.1016/j.neures.2017.11.006.
    [36] LOHSE AW, KÖGEL M, MEYER ZUM BÜSCHENFELDE KH. Evidence for spontaneous immunosuppression in autoimmune hepatitis[J]. Hepatology, 1995, 22( 2): 381- 388.
    [37] CUETO-SANCHEZ A, NIU H, DEL CAMPO-HERRERA E, et al. Lymphocyte profile and immune checkpoint expression in drug-induced liver injury: An immunophenotyping study[J]. Clin Pharmacol Ther, 2021, 110( 6): 1604- 1612. DOI: 10.1002/cpt.2423.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1054
  • HTML全文浏览量:  26
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-13
  • 录用日期:  2024-11-27
  • 出版日期:  2025-05-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回