基于微阵列数据的circRNA-miRNA-mRNA竞争性内源RNA网络构建及其与自身免疫性肝炎小鼠模型肝损伤的相关性分析
DOI: 10.12449/JCH250513
Construction of a circRNA-miRNA-mRNA competitive endogenous RNA network based on microarray data and its correlation with liver injury in a mouse model of autoimmune hepatitis
-
摘要:
目的 构建环状RNA(circRNA)-微小RNA(miRNA)-信使RNA(mRNA)竞争性内源RNA(ceRNA)网络,探讨其在刀豆蛋白A诱导的自身免疫性肝炎(AIH)小鼠模型中的潜在调控机制,并验证关键基因的表达与肝损伤的关系。 方法 使用高通量数据筛选差异表达的circRNA、miRNA和mRNA,基于Pearson相关分析和Miranda程序预测miRNA与mRNA及circRNA的配对关系,构建ceRNA网络。对网络中的差异表达基因进行GO和KEGG富集分析。选取SPF级雄性C57BL/6小鼠12只,采用随机数字表法分为对照组和模型组,每组6只,模型组通过尾静脉注射刀豆蛋白A构建AIH小鼠模型,对照组注射生理盐水。通过qRT-PCR和Western Blot方法验证circ_0001577、miR-7055-3p和Akt3的表达。测定血清转氨酶(ALT、AST)和肝组织中丙二醛(MDA)及一氧化氮(NO)含量,并分析其与基因表达的相关性。计量资料两组间比较采用成组t检验。使用Spearman相关分析法分析基因表达与肝损伤指标之间的相关性。 结果 构建了包含5 795个circRNA-miRNA-mRNA配对的ceRNA网络,发现circ_0001577为中心基因。与对照组小鼠比较,模型组中的circ_0001577和Akt3表达上调,miR-7055-3p下调,差异均有统计学意义(P值均<0.05),且circ_0001577与Akt3呈正相关(r=0.861,P<0.001),miR-7055-3p与两者呈负相关(r值分别为-0.644、-0.855,P值均<0.05)。模型组小鼠肝脏Akt3蛋白表达显著高于对照组(1.04±0.10 vs 0.72±0.06,t=-6.49,P=0.001),并与circ_0001577呈正相关(r=0.579,P=0.048),与miR-7055-3p呈负相关(r=-0.891,P<0.001)。模型组小鼠血清ALT、AST和肝组织MDA、NO含量较对照组均显著增加(P值均<0.05),上述肝损伤指标与circ_0001577、Akt3呈正相关(r值分别为0.849、0.865、0.811、0.801;0.889、0.954、0.938、0.961,P值均<0.05),与miR-7055-3p呈负相关(r值分别为-0.687、-0.818、-0.833、-0.870,P值均<0.05),且与Akt蛋白表达呈正相关(r值分别为0.648、0.796、0.848、0.860,P值均<0.05)。 结论 circ_0001577通过竞争性吸附miR-7055-3p,导致Akt3抑制被解除,进而促进Akt3的表达,参与AIH的发生发展。circ_0001577及其相关通路可能成为AIH的潜在治疗靶点。 -
关键词:
- 肝炎, 自身免疫性 /
- RNA, 环状 /
- 微RNAs /
- RNA, 信使 /
- 小鼠, 近交C57BL
Abstract:Objective To construct a circRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network, to investigate its potential regulatory mechanism in a mouse model of autoimmune hepatitis (AIH) induced by concanavalin A (ConA), and to verify the association between the expression of key genes and liver injury. Methods High-throughput data were used to identify differentially expressed circRNAs, miRNAs, and mRNAs, and the Pearson correlation analysis and the Miranda program were used to predict the pairing relationships between miRNAs and mRNAs/circRNAs and construct a ceRNA network. The gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed for the differentially expressed genes in the network. A total of 12 specific pathogen-free male C57BL/6 mice were divided into control group and model group using a random number table, with 6 mice in each group. The mice in the model group were given injection of ConA via the caudal vein to establish a mouse model of AIH, and those in the control group were given injection of normal saline. The methods of qRT-PCR and Western blot were used to validate the expression levels of circ_0001577, miR-7055-3p, and Akt3. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured, as well as the content of malondialdehyde (MDA) and nitric oxide (NO) in liver tissue, and their correlation with gene expression was analyzed. The independent-samples t test was used for comparison of continuous data between two groups, and the Spearman correlation analysis was used to investigate the correlation between gene expression levels and liver injury indicators. Results A ceRNA network containing 5 795 circRNA-miRNA-mRNA pairings was constructed, and circ_0001577 was identified as the central gene. Compared with the control group, the model group had significant increases in the expression levels of circ_0001577 and Akt3 and a significant reduction in the expression of miR-7055-3p (all P<0.05), and circ_0001577 was positively correlated with Akt3 (r=0.861, P<0.001), while miR-7055-3p was negatively correlated with circ_0001577 and Akt3 (r=-0.644 and -0.855, both P<0.05). Compared with the control group, the model group had a significantly higher protein expression level of Akt3 in the liver (1.04±0.10 vs 0.72±0.06, t=-6.49, P=0.001), which was positively correlated with circ_0001577 (r=0.579, P=0.048) and was negatively correlated with miR-7055-3p (r=-0.891, P<0.001). Compared with the control group, the model group had significant increases in the serum levels of ALT and AST and the content of MDA and NO in liver tissue (all P<0.05), and these liver injury indicators were positively correlated with circ_0001577 and Akt3 (r=0.849, 0.865, 0.811, 0.801; 0.889, 0.954, 0.938, and 0.961, all P<0.05) and were negatively correlated with miR-7055-3p (r=-0.687, -0.818, -0.833, and -0.870, all P<0.05); in addition, they were positively correlated with the protein expression level of Akt3 (r=0.648, 0.796, 0.848, and 0.860, all P<0.05). Conclusion This study shows that circ_0001577 promotes the expression of Akt3 by competitively adsorbing miR-7055-3p and relieving the inhibition of Akt3, thereby participating in the development and progression of AIH. -
Key words:
- Hepatitis, Autoimmune /
- RNA, Circular /
- MicroRNAs /
- RNA, Messenger /
- Mice, Inbred C57BL
-
表 1 用于qRT-PCR验证的基因特征
Table 1. Gene characteristics for qRT-PCR validation
基因 编号 染色体 FC P值 调控情况 circ_0001577 无 chr7 2.35 9.04×10-5 上调 miR-7055-3p MIMAT0028015 chr7 -6.37 6.83×10-3 下调 Akt3 XM_006496821.3 chr1 2.31 3.85×10-4 上调 表 2 引物序列
Table 2. Primer sequences
基因 引物(5'-3') 长度(bp) circ_0001577 F:TGATTATGTCCAGGCCCTTC 141 R:TATCTCACAGGCACCCTCAAC miR-7055-3p RT:CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTGGTGGG 21 F:ACACTCCAGCTGGGTTGCTACTTTGATAC R:TGGTGTCGTGGAGTCG Akt3 F:CATTGCTTTCAGGGCTCTTG 246 R:TGCCGTCGTCGTCATACTTT GAPDH F:GGTTGTCTCCTGCGACTTCA 183 R:TGGTCCAGGGTTTCTTACTCC U6 F:CTCGCTTCGGCAGCACA 96 R:AACGCTTCACGAATTTGCGT 表 3 按ceRNA评分降序排列的前10个ceRNA配对
Table 3. Top 10 ceRNA pairs in descending order of ceRNA Score
mRNA circRNA 共有miRNA P值 ceRNA得分 XM_006519062.2 circ_0001577 miR-7055-3p <0.001 0.017 2 miR-101c miR-877-3p miR-1927 miR-802-5p XM_017318309.1 circ_0001577 miR-7055-3p <0.001 0.014 5 miR-101c miR-877-3p miR-1927 miR-802-5p XM_017314716.1 circ_0001577 miR-877-3p 0.026 0.014 4 miR-802-5p miR-1927 miR-7055-3p XM_006495688.3 circ_0001577 miR-877-3p 0.019 0.013 5 miR-802-5p miR-1927 miR-7055-3p XM_006495684.3 circ_0001577 miR-877-3p 0.019 0.013 5 miR-802-5p miR-1927 miR-7055-3p XM_006495682.2 circ_0001577 miR-877-3p 0.019 0.013 5 miR-802-5p miR-1927 miR-7055-3p NM_133833.3 circ_0001577 miR-877-3p 0.019 0.013 5 miR-802-5p miR-1927 miR-7055-3p XM_017314712.1 circ_0001577 miR-877-3p 0.019 0.013 5 miR-802-5p miR-1927 miR-7055-3p XM_017314794.1 circ_0001577 miR-877-3p 0.014 0.012 5 miR-802-5p miR-1927 miR-7055-3p XM_017314741.1 circ_0001577 miR-877-3p 0.014 0.012 5 miR-802-5p miR-1927 miR-7055-3p -
[1] European Association for the Study of the Liver. EASL clinical practice guidelines: Autoimmune hepatitis[J]. J Hepatol, 2015, 63( 4): 971- 1004. DOI: 10.1016/j.jhep.2015.06.030. [2] DALEKOS GN, KOSKINAS J, PAPATHEODORIDIS GV. Hellenic association for the study of the liver clinical practice guidelines: Autoimmune hepatitis[J]. Ann Gastroenterol, 2019, 32( 1): 1- 23. DOI: 10.20524/aog.2018.0330. [3] KOMORI A. Recent updates on the management of autoimmune hepatitis[J]. Clin Mol Hepatol, 2021, 27( 1): 58- 69. DOI: 10.3350/cmh.2020.0189. [4] WANG HX, LIU M, WENG SY, et al. Immune mechanisms of Concanavalin A model of autoimmune hepatitis[J]. World J Gastroenterol, 2012, 18( 2): 119- 125. DOI: 10.3748/wjg.v18.i2.119. [5] FLOREANI A, RESTREPO-JIMÉNEZ P, SECCHI MF, et al. Etiopathogenesis of autoimmune hepatitis[J]. J Autoimmun, 2018, 95: 133- 143. DOI: 10.1016/j.jaut.2018.10.020. [6] TANAKA A. Autoimmune hepatitis: 2019 update[J]. Gut Liver, 2020, 14( 4): 430- 438. DOI: 10.5009/gnl19261. [7] LIU Y, LI ZC, HAO JH, et al. Circular RNAs associated with a mouse model of concanavalin A-induced autoimmune hepatitis: Preliminary screening and comprehensive functional analysis[J]. FEBS Open Bio, 2020, 10( 11): 2350- 2362. DOI: 10.1002/2211-5463.12981. [8] SALZMAN J. Circular RNA expression: Its potential regulation and function[J]. Trends Genet, 2016, 32( 5): 309- 316. DOI: 10.1016/j.tig.2016.03.002. [9] ZHANG Y, ZHANG XO, CHEN T, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51( 6): 792- 806. DOI: 10.1016/j.molcel.2013.08.017. [10] HE L, MAN CF, XIANG SY, et al. Circular RNAs’ cap-independent translation protein and its roles in carcinomas[J]. Mol Cancer, 2021, 20( 1): 119. DOI: 10.1186/s12943-021-01417-4. [11] DONG ZR, KE AW, LI T, et al. CircMEMO1 modulates the promoter methylation and expression of TCF21 to regulate hepatocellular carcinoma progression and sorafenib treatment sensitivity[J]. Mol Cancer, 2021, 20( 1): 75. DOI: 10.1186/s12943-021-01361-3. [12] QU SB, YANG XS, LI XL, et al. Circular RNA: A new star of noncoding RNAs[J]. Cancer Lett, 2015, 365( 2): 141- 148. DOI: 10.1016/j.canlet.2015.06.003. [13] ZHANG MY, WANG JB, ZHU ZW, et al. Differentially expressed circular RNAs in systemic lupus erythematosus and their clinical significance[J]. Biomed Pharmacother, 2018, 107: 1720- 1727. DOI: 10.1016/j.biopha.2018.08.161. [14] YANG X, LI J, WU Y, et al. Aberrant dysregulated circular RNAs in the peripheral blood mononuclear cells of patients with rheumatoid arthritis revealed by RNA sequencing: Novel diagnostic markers for RA[J]. Scand J Clin Lab Invest, 2019, 79( 8): 551- 559. DOI: 10.1080/00365513.2019.1674004. [15] LIU Y, CHEN H, HAO JH, et al. Characterization and functional prediction of the microRNAs differentially expressed in a mouse model of concanavalin A-induced autoimmune hepatitis[J]. Int J Med Sci, 2020, 17( 15): 2312- 2327. DOI: 10.7150/ijms.47766. [16] LIU Y, CHEN H, HAO JH, et al. Microarray-based transcriptional profiling of a mouse model of autoimmune hepatitis[J]. FEBS Open Bio, 2020, 10( 10): 2040- 2054. DOI: 10.1002/2211-5463.12953. [17] WANG HY, RADOMSKA HS, PHELPS MA, et al. Replication study: Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs[J]. eLife, 2020, 9: e56651. DOI: 10.7554/eLife.56651. [18] PHELPS M, COSS C, WANG HY, et al. Registered report: Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs[J]. eLife, 2016, 5: e12470. DOI: 10.7554/eLife.12470. [19] LIU K, YAN ZM, LI YC, et al. Linc2GO: A human LincRNA function annotation resource based on ceRNA hypothesis[J]. Bioinformatics, 2013, 29( 17): 2221- 2222. DOI: 10.1093/bioinformatics/btt361. [20] RITCHIE ME, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43( 7): e47. DOI: 10.1093/nar/gkv007. [21] The Gene Ontology Consortium. The gene ontology resource: 20 years and still GOing strong[J]. Nucleic Acids Res, 2019, 47( D1): D330- D338. DOI: 10.1093/nar/gky1055. [22] MI HY, HUANG XS, MURUGANUJAN A, et al. PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements[J]. Nucleic Acids Res, 2017, 45( D1): D183- D189. DOI: 10.1093/nar/gkw1138. [23] YANG J, WANG B, WANG Y, et al. Exosomes derived from adipose mesenchymal stem cells carrying miRNA-22-3p promote schwann cells proliferation and migration through downregulation of PTEN[J]. Dis Markers, 2022, 2022: 7071877. DOI: 10.1155/2022/7071877. [24] JU J, LI XM, ZHAO XM, et al. Circular RNA FEACR inhibits ferroptosis and alleviates myocardial ischemia/reperfusion injury by interacting with NAMPT[J]. J Biomed Sci, 2023, 30( 1): 45. DOI: 10.1186/s12929-023-00927-1. [25] ASHWAL-FLUSS R, MEYER M, PAMUDURTI NR, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56( 1): 55- 66. DOI: 10.1016/j.molcel.2014.08.019. [26] TAY Y, RINN J, PANDOLFI PP. The multilayered complexity of ceRNA crosstalk and competition[J]. Nature, 2014, 505( 7483): 344- 352. DOI: 10.1038/nature12986. [27] PASQUINELLI AE. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship[J]. Nat Rev Genet, 2012, 13( 4): 271- 282. DOI: 10.1038/nrg3162. [28] HANSEN TB, JENSEN TI, CLAUSEN BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495( 7441): 384- 388. DOI: 10.1038/nature11993. [29] SALMENA L, POLISENO L, TAY Y, et al. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language?[J]. Cell, 2011, 146( 3): 353- 358. DOI: 10.1016/j.cell.2011.07.014. [30] YANG N, WANG L, CHEN TX, et al. ZNF521 which is downregulated by miR-802 suppresses malignant progression of hepatocellular carcinoma through regulating Runx2 expression[J]. J Cancer, 2020, 11( 19): 5831- 5839. DOI: 10.7150/jca.45190. [31] HAO PY, WAXMAN DJ. Functional roles of sex-biased, growth hormone-regulated microRNAs miR-1948 and miR-802 in young adult mouse liver[J]. Endocrinology, 2018, 159( 3): 1377- 1392. DOI: 10.1210/en.2017-03109. [32] SEOK S, SUN H, KIM YC, et al. Defective FXR-SHP regulation in obesity aberrantly increases miR-802 expression, promoting insulin resistance and fatty liver[J]. Diabetes, 2021, 70( 3): 733- 744. DOI: 10.2337/db20-0856. [33] ZHAO XY, LI SJ, WANG Z, et al. miR-101-3p negatively regulates inflammation in systemic lupus erythematosus via MAPK1 targeting and inhibition of the NF-κB pathway[J]. Mol Med Rep, 2021, 23( 5): 359. DOI: 10.3892/mmr.2021.11998. [34] YAO YF, WANG H, XI XQ, et al. miR-150 and SRPK1 regulate AKT3 expression to participate in LPS-induced inflammatory response[J]. Innate Immun, 2021, 27( 4): 343- 350. DOI: 10.1177/17534259211018800. [35] SHI JS, JIANG K, LI ZD. miR-145 ameliorates neuropathic pain via inhibiting inflammatory responses and mTOR signaling pathway by targeting Akt3 in a rat model[J]. Neurosci Res, 2018, 134: 10- 17. DOI: 10.1016/j.neures.2017.11.006. [36] LOHSE AW, KÖGEL M, MEYER ZUM BÜSCHENFELDE KH. Evidence for spontaneous immunosuppression in autoimmune hepatitis[J]. Hepatology, 1995, 22( 2): 381- 388. [37] CUETO-SANCHEZ A, NIU H, DEL CAMPO-HERRERA E, et al. Lymphocyte profile and immune checkpoint expression in drug-induced liver injury: An immunophenotyping study[J]. Clin Pharmacol Ther, 2021, 110( 6): 1604- 1612. DOI: 10.1002/cpt.2423. -