中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非酒精性脂肪性肝病合并幽门螺杆菌感染患者肠道菌群特征分析

刘晶晶 王琦珂 马志强 梁燕 李忍萍

引用本文:
Citation:

非酒精性脂肪性肝病合并幽门螺杆菌感染患者肠道菌群特征分析

DOI: 10.12449/JCH250511
基金项目: 

洛阳市科技计划项目 (2022063Y)

伦理学声明:本研究方案于2023年9月27日经由河南科技大学第二附属医院伦理委员会审批,批号:L2023006。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:刘晶晶、王琦珂负责论文撰写,数据分析,表格制作;马志强负责拟定写作思路,研究过程的实施;梁燕负责数据收集;李忍萍负责论文修改。
详细信息
    通信作者:

    李忍萍, 1823131236@qq.com (ORCID: 0009-0005-3109-3013)

Features of intestinal flora in patients with nonalcoholic fatty liver disease and Helicobacter pylori infection

Research funding: 

Luoyang Science and Technology Plan Project (2022063Y)

More Information
    Corresponding author: LI Renping, 1823131236@qq.com (ORCID: 0009-0005-3109-3013)
  • 摘要:   目的  通过比较健康人群、幽门螺杆菌(HP)感染患者、非酒精性脂肪性肝病(NAFLD)患者以及HP感染合并NAFLD患者的肠道菌群变化特点,探讨NAFLD合并HP患者肠道菌群特征及作用机制。  方法  选取河南科技大学第二附属医院2023年3月1日—2024年4月30日收治的NAFLD患者19例(NAFLD组)、HP感染患者19例(HP组)、NAFLD合并HP感染患者19例(NAFLD合并HP组),另选取健康体检者20例作为对照。留取粪便标本,提取标本的总DNA,进行PCR扩增,通过16S rDNA测序,分析4组人群肠道菌群特征及差异性。计量资料多组间比较采用方差分析,计数资料多组间比较采用χ2检验。菌群物种之间差异性分析采用Mann-Whitney U检验或Kruskal-Wallis H检验。  结果  NAFLD合并HP组与其他3组相比,肠道菌群丰富度有降低趋势。NAFLD合并HP组与NAFLD组相比、NAFLD组与健康对照组相比,菌群分布具有明显差异性(P值均<0.05)。在门水平上,NAFLD合并HP组占前3位的物种分别为厚壁菌门(59.94%)、变形菌门(17.00%)、放线菌门(14.75%),相比于其他3组,变形菌门占比增加,放线菌门占比减少。在属水平上,NAFLD合并HP组的前5位优势菌属分别为BifidobacteriumStreptococcusEscherichia-ShigellaAgathobacterRuminococcus gnavus_group。与NAFLD组相比,NAFLD合并HP组StreptococcusVeillonellaRothia的丰度升高,DialisterRuminococcus toraues_group的丰度降低。与HP组相比,NAFLD合并HP组CollinsellaSubdoligranulumCatenibacteriumPorphyromonas的丰度降低,而CitrobacterOlsenella的丰度升高,物种差异性分析均具有统计学意义(P值均<0.05)。  结论  NAFLD合并HP感染患者的肠道菌群发生相应变化,这些菌群可能是HP感染促进NAFLD发生、发展的肠道微生态因素。

     

  • 图  1  测序后16S rDNA序列长度分布

    Figure  1.  Length distribution of 16S rDNA sequences after sequencing

    图  2  物种等级曲线图

    Figure  2.  Species rank curve

    图  3  4组样本Venn图

    Figure  3.  Four groups of samples Venn

    图  4  4组样本α多样性小提琴图

    Figure  4.  Alpha diversity violin diagram of four groups

    图  5  NAFLD合并HP组与NAFLD组β多样性

    Figure  5.  Beta diversity in NAFLD combined with the HP infection group and NAFLD group

    图  6  NAFLD组与健康对照组β多样性

    Figure  6.  Beta diversity in NAFLD and control group

    图  7  4组相似性分析

    Figure  7.  ANOSIM of four groups

    图  8  门水平物种相对丰度柱状图

    Figure  8.  Histogram of relative abundance of species at the phylum level

    图  9  属水平物种相对丰度柱状图

    Figure  9.  Histogram of relative abundance of species at the genus level

    图  10  4组间门水平差异

    Figure  10.  Difference between the four groups at phylum level

    图  11  HP组与健康对照组门水平差异

    Figure  11.  Difference between HP group and control group at phylum level

    图  12  NAFLD合并HP组与HP组门水平差异

    Figure  12.  Difference between NAFLD combined with the HP infection group and HP group at phylum level

    图  13  NAFLD合并HP组与NAFLD组门水平差异

    Figure  13.  Difference between NAFLD combined with the HP infection group and NAFLD group at phylum level

    图  14  NAFLD组与健康对照组门水平差异

    Figure  14.  Difference between NAFLD group and control group at phylum level

    图  15  4组间属水平差异

    Figure  15.  Difference between the four groups at the genus level

    图  16  HP组与健康对照组属水平差异

    Figure  16.  Difference between HP and control group at genus level

    图  17  NAFLD合并HP组与HP组属水平差异

    Figure  17.  Difference between NAFLD combined with the HP infection group and HP group at genus level

    图  18  NAFLD合并HP组与NAFLD组属水平差异

    Figure  18.  Difference between NAFLD combined with the HP infection group and NAFLD group at genus level

    图  19  NAFLD组与健康对照组属水平差异

    Figure  19.  Difference between NAFLD group and control group at genus level

    注: 主要展示LDA score大于预设值的显著差异物种,预设值为LDA>3.0且P<0.05。

    图  20  标记物种的LDA效应值直方图

    Figure  20.  Histogram of LDA effect values for labelled species

    注: 不同圆圈层从内至外辐射分别代表界、门、纲、目、科、属、种7个分类级别,节点颜色为黄色则表示该物种在比较组中有显著性差异。

    图  21  组间差异的分类层次结构树

    Figure  21.  Taxonomic hierarchical tree of differences between groups

    图  22  4组间代谢通路相关分析

    Figure  22.  Metabolic pathway correlation analysis between four groups

    图  23  KEGG直系同源基因图

    Figure  23.  KEGG immediate homologous gene map

    表  1  4组研究对象一般情况比较

    Table  1.   Comparison of the general conditions of the four groups of study subjects

    项目 NAFLD组(n=19) NAFLD合并HP组(n=19) HP组(n=19) 健康对照组(n=20) 统计值 P
    男/女(例) 11/8 9/10 10/9 11/ 9 χ2=0.456 0.928
    年龄(岁) 42.57±8.12 41.63±7.86 42.42±8.28 40.75±8.72 F=0.202 0.895
    ALT(U/L) 37.68±9.92 37.95±8.34 34.05±7.34 31.35±6.07 F=3.019 0.035
    AST(U/L) 27.16±7.76 25.74±7.11 25.74±6.39 23.85±8.29 F=0.652 0.584
    GGT(U/L) 30.42±7.52 27.90±6.72 30.16±6.30 27.70±6.11 F=0.904 0.443
    BMI(kg/m2 25.56±1.46 25.63±1.70 23.44±1.96 22.79±1.07 F=16.564 <0.001
    下载: 导出CSV
  • [1] FANG J, YU CH, LI XJ, et al. Gut dysbiosis in nonalcoholic fatty liver disease: Pathogenesis, diagnosis, and therapeutic implications[J]. Front Cell Infect Microbiol, 2022, 12: 997018. DOI: 10.3389/fcimb.2022.997018.
    [2] ZHANG YB, GUO GY, ZHENG CH, et al. Research progress in association between Helicobacter pylori and metabolic syndrome and its effect on occurrence and development of metabolic syndrome[J]. J Jilin Univ(Med Edit), 2024, 50( 6): 1757- 1762. DOI: 10.13481/j.1671-587X.20240631.

    张艳彬, 郭光业, 郑彩华, 等. 幽门螺杆菌与代谢综合征关联性及其对代谢综合征发生发展影响的研究进展[J]. 吉林大学学报(医学版), 2024, 50( 6): 1757- 1762. DOI: 10.13481/j.1671-587X.20240631.
    [3] ABO-AMER YE, SABAL A, AHMED R, et al. Relationship between Helicobacter pylori infection and nonalcoholic fatty liver disease(NAFLD) in a developing country: A cross-sectional study[J]. Diabetes Metab Syndr Obes, 2020, 13: 619- 625. DOI: 10.2147/DMSO.S237866.
    [4] OKUSHIN K, TSUTSUMI T, IKEUCHI K, et al. Helicobacter pylori infection and liver diseases: Epidemiology and insights into pathogenesis[J]. World J Gastroenterol, 2018, 24( 32): 3617- 3625. DOI: 10.3748/wjg.v24.i32.3617.
    [5] Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of metabolic dysfunction-associated(non-alcoholic) fatty liver disease(Version 2024)[J]. J Prac Hepatol, 2024, 27( 4): 494- 510.

    中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 实用肝脏病杂志, 2024, 27( 4): 494- 510.
    [6] KONING M, HERREMA H, NIEUWDORP M, et al. Targeting nonalcoholic fatty liver disease via gut microbiome-centered therapies[J]. Gut Microbes, 2023, 15( 1): 2226922. DOI: 10.1080/19490976.2023.2226922.
    [7] ZHANG DY, WANG Q, BAI FH. Bidirectional relationship between Helicobacter pylori infection and nonalcoholic fatty liver disease: Insights from a comprehensive meta-analysis[J]. Front Nutr, 2024, 11: 1410543. DOI: 10.3389/fnut.2024.1410543.
    [8] MANTOVANI A, LANDO MG, BORELLA N, et al. Relationship between Helicobacter pylori infection and risk of metabolic dysfunction-associated steatotic liver disease: An updated meta-analysis[J]. Liver Int, 2024, 44( 7): 1513- 1525. DOI: 10.1111/liv.15925.
    [9] THURSBY E, JUGE N. Introduction to the human gut microbiota[J]. Biochem J, 2017, 474( 11): 1823- 1836. DOI: 10.1042/BCJ20160510.
    [10] LEVY M, KOLODZIEJCZYK AA, THAISS CA, et al. Dysbiosis and the immune system[J]. Nat Rev Immunol, 2017, 17( 4): 219- 232. DOI: 10.1038/nri.2017.7.
    [11] BOURSIER J, MUELLER O, BARRET M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota[J]. Hepatology, 2016, 63( 3): 764- 775. DOI: 10.1002/hep.28356.
    [12] MAVILIA-SCRANTON MG, WU GY, DHARAN M. Impact of Helicobacter pylori infection on the pathogenesis and management of nonalcoholic fatty liver disease[J]. J Clin Transl Hepatol, 2023, 11( 3): 670- 674. DOI: 10.14218/JCTH.2022.00362.
    [13] GAO JJ, ZHANG Y, GERHARD M, et al. Association between gut microbiota and Helicobacter pylori-related gastric lesions in a high-risk population of gastric cancer[J]. Front Cell Infect Microbiol, 2018, 8: 202. DOI: 10.3389/fcimb.2018.00202.
    [14] NABAVI-RAD A, SADEGHI A, ASADZADEH AGHDAEI H, et al. The double-edged sword of probiotic supplementation on gut microbiota structure in Helicobacter pylori management[J]. Gut Microbes, 2022, 14( 1): 2108655. DOI: 10.1080/19490976.2022.2108655.
    [15] DU LJ, CHEN BR, CHENG FL, et al. Effects of Helicobacter pylori therapy on gut microbiota: A systematic review and meta-analysis[J]. Dig Dis, 2024, 42( 1): 102- 112. DOI: 10.1159/000527047.
    [16] WANG YH, HUANG Y. Effect of Lactobacillus acidophilus and Bifidobacterium bifidum supplementation to standard triple therapy on Helicobacter pylori eradication and dynamic changes in intestinal flora[J]. World J Microbiol Biotechnol, 2014, 30( 3): 847- 853. DOI: 10.1007/s11274-013-1490-2.
    [17] WEISS G, FORSTER S, IRVING A, et al. Helicobacter pylori VacA suppresses Lactobacillus acidophilus-induced interferon beta signaling in macrophages via alterations in the endocytic pathway[J]. mBio, 2013, 4( 3): e00609-12. DOI: 10.1128/mBio.00609-12.
    [18] AHN SB, JUN DW, KANG BK, et al. Randomized, double-blind, placebo-controlled study of a multispecies probiotic mixture in nonalcoholic fatty liver disease[J]. Sci Rep, 2019, 9( 1): 5688. DOI: 10.1038/s41598-019-42059-3.
    [19] den BESTEN G, van EUNEN K, GROEN AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res, 2013, 54( 9): 2325- 2340. DOI: 10.1194/jlr.R036012.
    [20] YOON SJ, YU JS, MIN BH, et al. Bifidobacterium-derived short-chain fatty acids and indole compounds attenuate nonalcoholic fatty liver disease by modulating gut-liver axis[J]. Front Microbiol, 2023, 14: 1129904. DOI: 10.3389/fmicb.2023.1129904.
    [21] BLAAK EE, CANFORA EE, THEIS S, et al. Short chain fatty acids in human gut and metabolic health[J]. Benef Microbes, 2020, 11( 5): 411- 455. DOI: 10.3920/BM2020.0057.
    [22] MBAYE B, MAGDY WASFY R, BORENTAIN P, et al. Increased fecal ethanol and enriched ethanol-producing gut bacteria Limosilactobacillus fermentum, Enterocloster bolteae, Mediterraneibacter gnavus and Streptococcus mutans in nonalcoholic steatohepatitis[J]. Front Cell Infect Microbiol, 2023, 13: 1279354. DOI: 10.3389/fcimb.2023.1279354.
    [23] CROST EH, COLETTO E, BELL A, et al. Ruminococcus gnavus: Friend or foe for human health[J]. FEMS Microbiol Rev, 2023, 47( 2): fuad014. DOI: 10.1093/femsre/fuad014.
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  41
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-10
  • 录用日期:  2024-10-29
  • 出版日期:  2025-05-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回